Teknik Pertambangan

Top 5 Universitas Negeri di Indonesia yang Menyediakan Program Studi Teknik Perminyakan Terbaik

Dipublikasikan oleh Muhammad Ilham Maulana pada 19 April 2024


Universitas negeri dengan jurusan teknik perminyakan terbaik di Indonesia menarik untuk disimak. Kuliah di jurusan teknik perminyakan jadi impian banyak orang. Pasalnya, bekerja di bidang ini terkenal dengan gaji yang fantastis dan dapat merubah taraf hidup. Tak heran karena bidang ini punya tingkat kesulitan yang rumit.

Untuk kuliah di jurusan teknik perminyakan, Indonesia sudah memiliki beberapa universitas yang menyediakan jurusan ini. Jadi, tidak perlu kuliah jauh-jauh ke luar negeri untuk menekuni pendidikan sarjana di bidang perminyakan.

Mengutip Quipper Campus, Sabtu (9/12/2023), ada beberapa universitas negeri yang punya jurusan teknik perminyakan yang sudah terakreditasi bahkan lulusannya dibutuhkan di perusahaan-perusahaan tambang dan minyak bumi di Indonesia dan dunia.

Berikut adalah rangkuman dari 5 universitas negeri terbaik di Indonesia yang menawarkan program studi Teknik Perminyakan:

  1. Institut Teknologi Bandung (ITB): Perguruan tinggi top Indonesia di bidang teknik ini juga punya jurusan Teknik Perminyakan, bahkan jadi salah satu jurusan yang memiliki banyak peminat. Jurusan Teknik Perminyakan ITB ada di Fakultas Pertambangan Teknik Perminyakan. Terakreditasi Unggul, banyak alumninya yang setelah lulus bekerja di perusahaan minyak dan pertambangan tak hanya di Indonesia, tapi menyebar ke seluruh dunia.
  2. Universitas Jember: Universitas Jember atau Unej adalah salah satu perguruan tinggi negeri yang berada di Jawa Timur. Kampus ini ternyata juga memiliki jurusan Teknik Perminyakan yang masuk ke Fakultas Teknik. Unej jadi satu-satunya universitas negeri di Jawa Timur yang memiliki jurusan Teknik Perminyakan dan telah terakreditasi B.
  3. UPN Veteran Yogyakarta: Meski UPN Veteran ada tiga cabang lain yang berada di SUrabaya dan Jakarta, kampus yang memiliki jurusan Teknik Perminyakan hanya di UPN Veteran Yogyakarta. Jurusan Teknik Perminyakan di kampus Bela Negara ini ada di Fakultas Teknologi Mineral. Akreditasinya jurusan ini sudah A dari BAN-PT.
  4. Universitas ini jadi satu-satunya perguruan tinggi negeri yang ada di Ambon, Maluku dengan jurusan Teknik Perminyakan. Ini untuk memenuhi kebutuhan pekerja khususnya banyak perusahaan tambang dan minyak bumi yang ada di wilayah Timur Indonesia. Berada di Fakultas Teknik, jurusan ini terakreditasI oleh Lembaga Akreditasi Mandiri (LAM).Teknik.
  5. Universitas ini merupakan universitas negeri di Manokwari, Papua Barat yang memiliki program studi Teknik Perminyakan. Program studi Teknik Perminyakan dan Gas Bumi di Unipa adalah Diploma 3 yang berada di Fakultas Teknik Pertambangan dan Perminyakan. Hal ini sejalan dengan kebutuhan tenaga kerja di bidang ini, mengingat banyak perusahaan perminyakan dan pertambangan yang ada di wilayah Papua, contohnya PT. Freeport Indonesia. Maka dari itu lulusanya banyak yang bekerja di perusahaan ternama.

Itu dia 5 universitas negeri di Indonesia yang memiliki jurusan Teknik Perminyakan terbaik. Jurusan ini didirikan untuk memenuhi kebutuhan di bidang teknik perminyakan dan pertambangan baik di Indonesia hingga di kancah dunia. Diharapkan dengan adanya jurusan ini, Indonesia dapat mendirikan banyak perusahaan minyak bumi yang bersaing di dunia internasional dengan tenaga kerja lokal.
 

Sumber: edukasi.okezone.com

Selengkapnya
Top 5 Universitas Negeri di Indonesia yang Menyediakan Program Studi Teknik Perminyakan Terbaik

Teknik Pertambangan

Memahami Beta-Titanium dan Berbagai Tingkatan Grade Titanium

Dipublikasikan oleh Muhammad Ilham Maulana pada 16 April 2024


Paduan titanium beta dicirikan dengan adanya bentuk alotropik beta (BCC) dari titanium, dan biasanya menggabungkan elemen lain di samping titanium dalam proporsi yang bervariasi. Unsur-unsur tambahan ini dapat mencakup molibdenum, vanadium, niobium, tantalum, zirkonium, mangan, besi, kromium, kobalt, nikel, dan tembaga.

Paduan ini menawarkan sifat mampu bentuk yang sangat baik dan mudah dilas. Mereka telah digunakan secara luas di bidang ortodontik sejak tahun 1980-an, secara bertahap menggantikan baja tahan karat untuk aplikasi tertentu. Dibandingkan dengan baja tahan karat, paduan titanium beta menunjukkan rasio kekuatan-ke-modulus elastisitas yang jauh lebih tinggi, memungkinkan defleksi elastis yang lebih besar pada pegas dan mengurangi gaya per unit perpindahan.

Namun, beberapa paduan titanium beta memiliki potensi untuk berubah menjadi fase omega-titanium heksagonal yang keras dan rapuh dalam kondisi tertentu, seperti suhu kriogenik atau paparan radiasi pengion.

Suhu transisi paduan titanium mengacu pada suhu di mana titanium mengalami transformasi alotropik dari fase alfa heksagonal yang padat menjadi fase beta kubik yang berpusat pada tubuh, yang tetap stabil hingga suhu leleh. Elemen paduan tertentu, yang disebut penstabil alfa, menaikkan suhu transisi alfa ke beta, sementara yang lain, yang dikenal sebagai penstabil beta, menurunkannya. Contoh penstabil alfa meliputi aluminium, galium, germanium, karbon, oksigen, dan nitrogen, sedangkan penstabil beta meliputi molibdenum, vanadium, tantalum, niobium, mangan, besi, kromium, kobalt, nikel, tembaga, dan silikon.

Sifat-sifat materi

Secara umum, titanium fase beta adalah fase yang lebih kuat dan fase alfa lebih kuat tetapi kurang tahan lama karena jumlah bidang slip yang lebih banyak pada struktur bcc fase beta dibandingkan dengan fase alfa hcp. Titanium dalam fase alfa-beta memiliki sifat mekanik yang berada di antara keduanya.

Titanium dioksida larut dalam logam pada suhu tinggi dan pembentukannya sangat energik. Kedua faktor tersebut berarti bahwa semua titanium kecuali titanium yang dimurnikan dengan sangat hati-hati memiliki sejumlah besar oksigen terlarut, sehingga dapat dianggap sebagai paduan Ti-O. Endapan oksida memberikan kekuatan (seperti disebutkan di atas), tetapi tidak terlalu sensitif terhadap perlakuan panas dan dapat mengurangi paduan dan ketangguhannya secara signifikan.

Banyak paduan juga mengandung titanium sebagai pengotor kecil, tetapi karena paduan biasanya diklasifikasikan berdasarkan unsur mana yang membentuk sebagian besar material, maka paduan tersebut biasanya tidak dianggap titanium. untuk menyukai Lihat subbagian aplikasi titanium.

Macam - macam grade titanium

Paduan titanium dikategorikan ke dalam berbagai tingkatan, masing-masing dengan komposisi dan sifat berbeda:

  • Kelas 1: Paduan titanium paling ulet dan paling lembut, cocok untuk pembentukan dingin dan lingkungan korosif.
  • Kelas 2: Titanium murni dengan kandungan oksigen standar.
  • Kelas 2H: Titanium murni dengan jaminan Kekuatan Tarik Ultimate (UTS) minimum yang lebih tinggi dibandingkan Kelas 2.
  • Kelas 3: Titanium murni dengan kandungan oksigen sedang.
  • Kelas 1-4: Paduan titanium murni komersial, dengan kekuatan tarik dan luluh yang meningkat dengan angka kelas yang lebih tinggi.
  • Kelas 5 (Ti-6Al-4V): Paduan yang paling umum digunakan, dengan 6% aluminium, 4% vanadium, dan elemen lainnya, menawarkan kekuatan, ketahanan korosi, dan kemampuan fabrikasi yang sangat baik.
  • Kelas 6 (Ti-5Al-2.5Sn): Mengandung 5% aluminium dan 2,5% timah, cocok untuk badan pesawat dan mesin jet karena kemampuan las dan kekuatannya pada suhu tinggi.
  • Kelas 7: Mirip dengan Kelas 2 tetapi dengan tambahan paladium untuk meningkatkan ketahanan terhadap korosi celah.
  • Kelas 9: Mengandung 3% aluminium dan 2,5% vanadium, menawarkan keseimbangan antara kemudahan pengelasan dan kekuatan tinggi.
  • Kelas 11: Mengandung paladium untuk meningkatkan ketahanan terhadap korosi.
  • Kelas 12: Mengandung molibdenum dan nikel untuk kemampuan las yang sangat baik.
  • Kelas 13-15: Mengandung nikel dan rutenium.
  • Kelas 16: Mengandung paladium untuk meningkatkan ketahanan terhadap korosi.
  • Kelas 17: Mirip dengan Kelas 16 dengan peningkatan ketahanan terhadap korosi.
  • Kelas 18: Mengandung aluminium, vanadium, dan paladium untuk meningkatkan ketahanan terhadap korosi.
  • Kelas 19-21: Mengandung berbagai kombinasi aluminium, vanadium, kromium, zirkonium, molibdenum, niobium, dan silikon.
  • Kelas 23 (Ti-6Al-4V-ELI): Mirip dengan Kelas 5 tetapi dengan pengurangan elemen interstisial untuk meningkatkan keuletan dan ketangguhan patah, biasanya digunakan untuk implan medis.
  • Kelas 24: Mengandung aluminium, vanadium, dan paladium.
  • Kelas 25: Mengandung aluminium, vanadium, nikel, dan paladium.
  • Kelas 26-29: Mengandung rutenium dalam proporsi yang bervariasi.
  • Kelas 30-32: Mengandung kobalt, timah, zirkonium, dan molibdenum.
  • Kelas 33-34: Mengandung nikel, paladium, rutenium, dan kromium.
  • Kelas 35: Mengandung aluminium, molibdenum, vanadium, besi, dan silikon.
  • Kelas 36: Mengandung niobium.
  • Kelas 37: Mengandung aluminium.
  • Kelas 38: Dikembangkan untuk pelapisan baja, mengandung aluminium, vanadium, dan besi, dengan sifat yang mirip dengan Kelas 5 tetapi dengan kemampuan kerja dingin yang lebih baik.

Nilai ini menawarkan beragam properti yang cocok untuk berbagai aplikasi di berbagai industri, termasuk dirgantara, medis, dan otomotif.


Disadur dari: en.wikipedia.org 

Selengkapnya
Memahami Beta-Titanium dan Berbagai Tingkatan Grade Titanium

Teknik Pertambangan

Transisi dan Kegiatan Bahan Bakar Fosil

Dipublikasikan oleh Muhammad Ilham Maulana pada 16 April 2024


Bahan bakar fosil, seperti batu bara, minyak, dan gas alam, adalah bahan organik yang terbentuk selama jutaan tahun dari organisme yang telah mati. Bahan bakar ini merupakan sumber energi penting untuk pemanasan, transportasi, dan pembangkit listrik. Namun, pembakaran yang ekstensif berkontribusi terhadap degradasi lingkungan, dengan lebih dari 70% emisi gas rumah kaca yang disebabkan oleh manusia berasal dari CO2 yang dilepaskan selama pembakaran. Menyadari urgensi perubahan iklim, ada pergeseran global menuju solusi energi berkelanjutan, yang bertujuan untuk mengurangi ketergantungan pada bahan bakar fosil. Transisi ini menimbulkan tantangan ekonomi, sehingga memerlukan pendekatan yang adil untuk mengatasi dampak sosial. Upaya internasional, seperti tujuan pembangunan berkelanjutan PBB dan Perjanjian Iklim Paris, bertujuan untuk mengarahkan transisi ini menuju alternatif energi yang lebih bersih.


Bahan bakar fosil utama (dari atas ke bawah): gas alam, minyak, dan batu bara.

Asal Mula Konsep Bahan Bakar Fosil

Konsep yang menjelaskan bahwa bahan bakar fosil berasal dari sisa-sisa fosil tumbuhan yang telah mati, pertama kali diajukan oleh Andreas Libavius pada tahun 1597 dan kemudian ditegaskan kembali oleh Mikhail Lomonosov pada pertengahan abad ke-18, menandai pemahaman penting dalam sejarah alam bumi. Istilah "bahan bakar fosil" diciptakan oleh ahli kimia Jerman Caspar Neumann pada tahun 1759, yang berarti sumber daya yang diperoleh dari kedalaman bumi.


Karena ladang minyak hanya terletak di tempat-tempat tertentu di Bumi, hanya beberapa negara yang independen terhadap minyak; negara-negara lain bergantung pada kapasitas produksi minyak negara-negara tersebut.

Fitoplankton dan zooplankton akuatik, yang membusuk dalam kondisi kekurangan oksigen jutaan tahun yang lalu, memulai proses pembentukan minyak bumi dan gas alam melalui dekomposisi anaerobik. Bahan organik ini, bercampur dengan sedimen, mengalami proses transformasi akibat panas dan tekanan yang hebat, sehingga menghasilkan kerogen dan kemudian hidrokarbon cair dan gas.

Meskipun tumbuhan di bumi berkontribusi terhadap pembentukan batu bara dan metana, proses geologi yang berkepanjangan menjadikan bahan bakar fosil sebagai sumber daya yang tidak terbarukan. Meskipun sumber energi tersebut dihasilkan terus-menerus, penipisan cadangan yang diketahui jauh melebihi laju pembentukan cadangan baru, hal ini menunjukkan keterbatasan sumber energi yang tak ternilai harganya.

Pentingnya Bahan Bakar Fosil

Bahan bakar fosil telah memainkan peran penting dalam kemajuan manusia karena kemampuannya yang mudah dibakar untuk menghasilkan panas. Gambut, yang digunakan sebagai bahan bakar rumah tangga sejak zaman kuno, mendahului sejarah yang tercatat. Peradaban awal menggunakan batu bara untuk peleburan bijih logam, sementara hidrokarbon semi-padat dari rembesan minyak berfungsi untuk berbagai tujuan seperti waterproofing dan pembalseman. Abad ke-19 menandai dimulainya eksploitasi minyak bumi secara komersial. Setelah dianggap sebagai limbah, gas alam sekarang dianggap sebagai sumber daya yang berharga, dengan deposito yang juga berfungsi sebagai sumber utama helium.


Pendapatan bersih industri minyak dan gas global mencapai rekor US$4 triliun pada tahun 2022.

Pentingnya minyak mentah berat, pasir minyak, dan serpih minyak meningkat pada awal tahun 2000-an, meskipun tren disinvestasi muncul karena jejak karbon yang tinggi. Bahan bakar fosil mendukung Revolusi Industri melalui mesin uap dan memfasilitasi kemajuan transportasi, termasuk mobil, truk, kereta api, dan pesawat terbang. Bahan bakar fosil juga berfungsi sebagai sumber penting pembangkit listrik dan bahan baku untuk industri petrokimia. Selain itu, bahan bakar fosil juga berperan penting dalam kemajuan pertanian, menyediakan energi untuk pupuk, pestisida, dan irigasi, sehingga mendukung produksi pangan global dan pertumbuhan populasi.

Dampak Lingkungan

Penggunaan bahan bakar fosil membawa dampak lingkungan yang beragam, melampaui pengguna langsung dan memengaruhi ekosistem secara global. Setiap jenis bahan bakar berkontribusi pada perubahan iklim dengan melepaskan CO2 saat terbakar, dan batu bara khususnya berdampak buruk karena menghasilkan emisi partikel, kabut asap, dan hujan asam tambahan. Perubahan iklim memperburuk degradasi ekosistem, mengancam kepunahan spesies, dan menimbulkan tantangan dalam produksi pangan, yang pada akhirnya mengancam kesehatan manusia. Selain itu, pembakaran menghasilkan asam sulfat dan nitrat, yang menyebabkan hujan asam yang merusak struktur alami dan buatan.


Proyek Karbon Global menunjukkan bagaimana penambahan CO2 sejak tahun 1880 disebabkan oleh berbagai sumber yang terus meningkat.

Bahan bakar fosil juga mengandung unsur radioaktif seperti uranium dan torium, yang dilepaskan ke atmosfer saat terbakar, menimbulkan risiko lingkungan dan kesehatan. Pembakaran batu bara menghasilkan abu dasar dan abu terbang yang signifikan, yang lebih lanjut memperburuk polusi lingkungan. Selain itu, ekstraksi, pengolahan, dan transportasi bahan bakar fosil berdampak pada lingkungan, termasuk degradasi habitat akibat praktik penambangan dan polusi dari kilang minyak. Upaya untuk mengurangi dampak ini melibatkan promosi sumber energi terbarukan dan penerapan regulasi lingkungan. Meskipun ada upaya tersebut, investasi pemerintah dalam produksi bahan bakar fosil terus memperparah kekhawatiran lingkungan, sehingga mendesak untuk segera beralih ke alternatif energi yang berkelanjutan.

Dampak Penyakit dan kematian

Pencemaran lingkungan dari bahan bakar fosil berdampak pada manusia karena materi partikulat dan polusi udara lainnya dari pembakaran bahan bakar fosil menyebabkan penyakit dan kematian ketika terhirup. Dampak kesehatan ini termasuk kematian dini, penyakit pernapasan akut, asma yang memburuk, bronkitis kronis, dan penurunan fungsi paru-paru.

Mereka yang miskin, kurang gizi, sangat muda, sangat tua, dan orang-orang yang memiliki penyakit pernapasan yang sudah ada sebelumnya dan masalah kesehatan lainnya lebih berisiko. Kematian global akibat polusi udara dari bahan bakar fosil diperkirakan mencapai lebih dari 8 juta orang (2018, hampir 1 dari 5 kematian di seluruh dunia), 10,2 juta (2019), dan 5,13 juta kematian akibat polusi udara ambien karena penggunaan bahan bakar fosil (2023).

Pentingnya Penghapusan Bahan Bakar Fosil dan Divestasi

Pengurangan penggunaan dan produksi bahan bakar fosil secara bertahap hingga nol, dikenal sebagai penghapusan bahan bakar fosil. Tujuannya untuk mengurangi kematian dan penyakit akibat polusi udara, membatasi perubahan iklim, serta meningkatkan kemandirian energi. Langkah ini merupakan bagian dari transisi energi terbarukan yang sedang berlangsung, meski terhambat oleh subsidi bahan bakar fosil.

Transisi yang adil adalah kerangka kerja yang dikembangkan oleh gerakan serikat pekerja. Mencakup berbagai intervensi sosial untuk melindungi hak dan mata pencaharian pekerja ketika perekonomian beralih ke produksi yang lebih berkelanjutan. Di Eropa, pendukung transisi yang adil ingin menyatukan keadilan sosial dan iklim, misalnya untuk pekerja batu bara di wilayah yang bergantung pada batu bara namun kekurangan peluang kerja di luar sektor ini.

Divestasi atau pelepasan investasi dari bahan bakar fosil dan pengalihan ke solusi perubahan iklim, adalah upaya untuk mengurangi perubahan iklim dengan mengekang tekanan sosial, politik, dan ekonomi. Tujuannya agar institusi melepaskan aset termasuk saham, obligasi, dan instrumen keuangan lain yang terhubung dengan perusahaan ekstraksi bahan bakar fosil.

Kampanye divestasi bahan bakar fosil muncul di kampus perguruan tinggi Amerika Serikat pada 2011, dengan mahasiswa mendesak administrasi mengalihkan investasi dana abadi dari industri bahan bakar fosil ke energi bersih dan komunitas yang paling terdampak perubahan iklim. Pada 2012, Unity College di Maine menjadi institusi pendidikan tinggi pertama yang melakukan divestasi dana abadi dari bahan bakar fosil.

Menjelang 2015, divestasi bahan bakar fosil dilaporkan sebagai gerakan divestasi yang berkembang tercepat dalam sejarah. Per Juli 2023, lebih dari 1.593 institusi dengan total aset lebih dari $40,5 triliun di seluruh dunia telah memulai atau berkomitmen untuk melakukan divestasi dalam bentuk tertentu dari bahan bakar fosil.

Sektor Industri

Pada tahun 2019, Saudi Aramco menjadi berita utama dengan menjadi perusahaan publik paling berharga di dunia, mencapai valuasi $ 2 triliun yang mengejutkan hanya satu hari setelah IPO, menandai tonggak sejarah yang signifikan dalam industri bahan bakar fosil. Namun, dampak ekonomi dari bahan bakar fosil lebih dari sekadar kemenangan perusahaan. Polusi udara yang berasal dari penggunaan bahan bakar fosil memiliki biaya yang sangat besar, diperkirakan mencapai $ 2,9 triliun pada tahun 2018, setara dengan 3,3% dari PDB global. Subsidi bahan bakar fosil semakin memperumit lanskap keuangan, dengan pemerintah memberikan keringanan pajak dan insentif yang mendorong produksi dan konsumsi.


Subsidi bahan bakar fosil per kapita, 2019. Subsidi bahan bakar fosil per kapita sebelum pajak diukur dalam dolar AS yang konstan.

Meskipun subsidi ini bertujuan untuk meningkatkan ketahanan energi dan mengurangi kesenjangan ekonomi, subsidi ini sering kali menguntungkan segmen populasi yang lebih kaya dan memperburuk degradasi lingkungan. Meskipun ada janji untuk menghapus subsidi yang tidak efisien, subsidi tersebut tetap ada karena permintaan pemilih dan kekhawatiran akan keamanan energi. Lobi bahan bakar fosil, yang terdiri dari perusahaan-perusahaan besar dan perwakilan industri, memiliki pengaruh yang signifikan terhadap kebijakan pemerintah, dan sering kali menghalangi perlindungan lingkungan dan inisiatif iklim untuk melindungi kepentingan mereka.

Kehadiran dan kegiatan mereka tersebar di berbagai negara, dengan pengaruh penting di negara-negara ekonomi demokratis seperti Kanada, Australia, Amerika Serikat, dan Eropa. Para pelobi ini mengeksploitasi krisis internasional untuk mendorong deregulasi dan mempromosikan pengembangan bahan bakar fosil, melanggengkan dominasi industri ini meskipun ada masalah lingkungan dan sosial yang meningkat.


Disadur dari: en.wikipedia.org 

Selengkapnya
Transisi dan Kegiatan Bahan Bakar Fosil

Teknik Pertambangan

Mengupas Sejarah dan Perkembangan Konstruksi Bawah Tanah

Dipublikasikan oleh Muhammad Ilham Maulana pada 15 April 2024


Konstruksi bawah tanah melibatkan pembangunan terowongan, poros, ruang, dan lorong di bawah permukaan bumi. Hal ini juga dapat merujuk pada setiap pekerjaan konstruksi yang dilakukan di bawah permukaan tanah dalam proyek bangunan tradisional.

Sejarah singkat

Neanderthal dikenal melakukan konstruksi bawah tanah, meskipun metode mereka dianggap kurang maju dibandingkan dengan manusia. Bukti situs konstruksi Neanderthal di Prancis berasal dari tahun 174.000 SM, mendahului situs-situs manusia. Konstruksi bawah tanah awal manusia kemungkinan besar dimulai dengan penghuni gua prasejarah yang ingin memperluas ruang hidup mereka. Tujuan dari banyak struktur bawah tanah kuno, seperti erdstall yang ditemukan di seluruh Eropa, masih menjadi misteri. Sepanjang sejarah, berbagai peradaban mempraktikkan konstruksi bawah tanah, sering kali menggunakan arsitektur potongan batu. Di pusat-pusat kota kuno, ruang bawah tanah berfungsi sebagai tempat pemakaman, menawarkan perlindungan dari penjajah, dan memfasilitasi utilitas publik awal.

Penggunaan mesiu dalam konstruksi bawah tanah pertama kali tercatat di Prancis pada tahun 1681. Penemuan dinamit, bor bertenaga uap, dan bor udara bertekanan pada abad ke-18 merevolusi industri ini. Abad ke-19 menyaksikan kemajuan dalam teknik terowongan perisai, yang meningkatkan keamanan dalam konstruksi bawah tanah berbasis tanah. Seiring dengan percepatan urbanisasi, kota-kota membutuhkan infrastruktur bawah tanah yang luas, termasuk saluran pembuangan, sistem air, kereta bawah tanah, dan ruang komersial. Pada akhir abad ke-20 dan awal abad ke-21, kemajuan otomatisasi dan rekayasa geoteknik memungkinkan proyek konstruksi bawah tanah yang lebih besar dan lebih ambisius.

Upaya arkeologi di kota-kota besar sering kali membutuhkan teknik konstruksi bawah tanah untuk menggali tanpa mengganggu bangunan yang ada. Museum bawah tanah telah didirikan untuk melestarikan struktur bersejarah secara in situ, tanpa mengubah bangunan yang signifikan di atas tanah. Selain itu, penemuan arkeologi sering kali muncul selama proyek konstruksi bawah tanah.

Keamanan dan Regulasi

Konstruksi bawah tanah menghadirkan berbagai risiko dan tantangan, mirip dengan konstruksi tradisional dan praktik penambangan. Pekerja konstruksi bawah tanah sering kali bekerja dalam kondisi pencahayaan redup dan lingkungan berbahaya, sehingga menghadapi risiko seperti paparan kontaminan, kebakaran, dan ledakan. Pada tahun 1971, Administrasi Keselamatan dan Kesehatan Kerja (OSHA) di Amerika menerapkan peraturan khusus untuk konstruksi bawah tanah. Meskipun OSHA mengawasi konstruksi bawah tanah oleh perusahaan dan lembaga federal, OSHA tidak mengatur aktivitas konstruksi bawah tanah yang berkaitan dengan pertambangan. Meskipun merupakan salah satu industri paling berbahaya secara global, konstruksi bawah tanah secara bertahap meningkatkan standar keselamatannya, terutama dengan otomatisasi pada tugas-tugas yang paling berbahaya.

Konstruksi terowongan

Pembangunan terowongan, struktur bawah tanah buatan manusia yang paling umum, telah dilakukan melalui berbagai metode sejak zaman kuno.

Konstruksi militer

Sepanjang sejarah, beragam benteng pertahanan berada di bawah tanah sepenuhnya atau sebagian. Kemunculan fasilitas militer bawah tanah modern, yang terutama dirancang untuk menahan serangan udara, terjadi selama Perang Dunia Kedua dan era sebelum perang. Nazi Jerman secara khusus memindahkan sebagian besar industri militernya ke bawah tanah selama tahap akhir Perang Dunia II, memanfaatkan kerja paksa yang mengakibatkan banyak korban jiwa di antara para tahanan dan budak yang terlibat dalam konstruksi.

Selama Perang Dingin, dua jenis struktur bawah tanah baru muncul: silo rudal yang dibangun oleh kekuatan nuklir, dan bunker perlindungan kepemimpinan yang dibangun oleh kekuatan dunia sebagai tanggapan atas meningkatnya ketegangan. Contoh penting dari yang terakhir termasuk Kompleks Gunung Cheyenne, Metro-2, dan Kota Bawah Tanah di Beijing.


Disadur dari: en.wikipedia.org

Selengkapnya
Mengupas Sejarah dan Perkembangan Konstruksi Bawah Tanah

Teknik Pertambangan

Perusahaan Dengan Produksi Gas Terbesar di Indonesia

Dipublikasikan oleh Muhammad Ilham Maulana pada 15 April 2024


Kementerian Energi dan Sumber Daya Alam (ESDM) mencatat bahwa Indonesia memiliki potensi gas bumi yang menjanjikan dengan cadangan mencapai 41,62 triliun kaki kubik (TCF). Meskipun jumlahnya tidak signifikan jika dibandingkan dengan cadangan dunia, namun Indonesia memiliki 68 cekungan yang belum dieksplorasi dan siap ditawarkan kepada investor.

Berdasarkan proyeksi neraca gas Indonesia untuk periode 2022-2030, produksi gas dari ladang minyak dan gas yang ada diperkirakan dapat memenuhi kebutuhan domestik. Bahkan, Indonesia diprediksi akan memiliki surplus gas hingga 1.715 MMSCFD dari beberapa proyek yang potensial dalam 10 tahun ke depan.

Data dari Kementerian ESDM menunjukkan bahwa pada tahun 2021, rata-rata produksi gas bumi di Indonesia mencapai 6.667 juta standar meter kubik per hari (MMSCFD). Beberapa perusahaan memiliki kapasitas produksi gas terbesar di negara ini.

Salah satu perusahaan terbesar adalah BP Berau Ltd., anak perusahaan dari British Petroleum (BP). Perusahaan ini mampu memproduksi rata-rata 1.312 MMSCFD pada tahun 2020, atau sekitar seperlima dari kapasitas produksi gas alam di Indonesia. BP Berau Ltd. mengoperasikan proyek LNG Tangguh yang terdiri dari enam gas alam terintegrasi di wilayah kontrak Kerjasama Wiriagar, Berau dan Muturi (KKS) di Teluk Bintun, Papua Barat.

Selain itu, ConocoPhillips (Grissik) Ltd menempati posisi kedua dengan kapasitas produksi 988,95 MMSCFD, diikuti oleh PT Pertamina EP dengan kapasitas produksi sebesar 889,79 MMSCFD pada tahun 2021.

Pada tahun 2023, PT Pertamina EP sedang aktif mencari sumber minyak dan gas bumi baru, termasuk di Kalimantan Utara, untuk mendukung target pemerintah Indonesia dalam mencapai kebutuhan energi nasional sebesar 12 miliar standar meter kubik gas pada tahun 2030.

Tabel Perusahaan Produksi Gas Bumi di Indonesia

 

Disadur dari: www.cnbcindonesia.com

Selengkapnya
Perusahaan Dengan Produksi Gas Terbesar di Indonesia

Teknik Pertambangan

Menyelusuri Jurusan Teknik Pertambangan dan Prospek Karir yang Menggiurkan

Dipublikasikan oleh Muhammad Ilham Maulana pada 26 Februari 2024


Jurusan Teknik Pertambangan semakin diminati di berbagai perguruan tinggi di Indonesia karena menawarkan peluang karier yang menjanjikan di industri pertambangan. Dengan kekayaan alam Indonesia yang melimpah, lulusan jurusan ini memiliki potensi besar untuk sukses di bidang tersebut. Program studi ini mempelajari berbagai aspek terkait eksplorasi dan eksploitasi mineral dan batubara, serta proses pertambangan secara keseluruhan.

Mata kuliah yang diajarkan dalam jurusan ini mencakup berbagai disiplin ilmu seperti geologi, matematika, fisika, dan teknik eksplorasi. Mahasiswa juga dibekali dengan keterampilan observasi, problem-solving, teamwork, dan analisis yang diperlukan dalam industri pertambangan.

Setelah lulus, lulusan Teknik Pertambangan memiliki beragam kesempatan karier di industri mineral dan batubara, termasuk di sektor tembaga, batu bara, emas, dan lainnya. Mereka juga dapat bekerja di industri alat berat, semen, pembangkit listrik, atau bahkan di lembaga pemerintah seperti Kementerian ESDM. Selain itu, mereka juga memiliki peluang untuk menjadi peneliti atau akademisi di bidang sains dan penelitian.

Beberapa universitas di Indonesia yang menawarkan jurusan Teknik Pertambangan antara lain Institut Teknologi Bandung, Universitas Pembangunan Nasional Veteran Yogyakarta, dan Universitas Hasanuddin. Sebelum memasuki jurusan ini, calon mahasiswa perlu membangun keterampilan observasi, problem-solving, dan analisis secara bertahap, karena keterampilan ini akan sangat berguna dalam dunia kerja nantinya.


Disadur dari: https://edukasi.okezone.com/read/2021/11/30/65/2509629/mengenal-jurusan-teknik-pertambangan-dan-peluang-kerjanya-yang-menjanjikan?page=3

Selengkapnya
Menyelusuri Jurusan Teknik Pertambangan dan Prospek Karir yang Menggiurkan
page 1 of 8 Next Last »