Pertambangan dan Perminyakan

Mengungkap Rahasia Intermetalik: Paduan Logam dengan Kekuatan Luar Biasa

Dipublikasikan oleh Sirattul Istid'raj pada 29 April 2025


Senyawa intermetalik (juga disebut senyawa intermetalik, paduan, paduan teratur, paduan teratur jarak jauh) adalah paduan yang membentuk senyawa padat yang teratur antara dua atau lebih elemen logam. Bahan intermetalik umumnya keras dan rapuh dengan sifat mekanik suhu tinggi yang baik. Mereka dapat diklasifikasikan sebagai senyawa intermetalik stoikiometri atau non-stoikiometri.

Meskipun istilah "senyawa intermetalik" untuk fase padat andquot; telah digunakan selama bertahun-tahun, Hume-Rothery berpendapat bahwa istilah tersebut memberikan intuisi yang menyesatkan yang menunjukkan stoikiometri tetap dan bahkan dekomposisi yang jelas ke dalam spesies.

Penggunaan umum

Dalam penggunaan umum, definisi penelitian, termasuk logam pasca-transisi dan metaloid, diperluas untuk mencakup senyawa seperti sementit, Fe3C. Senyawa-senyawa ini, kadang-kadang disebut senyawa interstisial, dapat bersifat stoikiometrik, dan memiliki sifat yang mirip dengan senyawa intermetalik yang didefinisikan di atas.

Properti dan aplikasi

Intermetalik biasanya rapuh pada suhu kamar dan memiliki titik leleh yang tinggi. Mode retak atau fraktur intergranular adalah karakteristik intermetalik karena deformasi plastis membutuhkan sistem slip independen yang terbatas. Namun, ada beberapa contoh intermetalik dengan mode fraktur ulet, seperti Nb-15Al-40Ti. Intermetalik lain dapat memiliki keuletan yang lebih baik dengan memadukannya dengan elemen lain untuk meningkatkan kohesi batas butir. Doping bahan lain seperti boron untuk meningkatkan kohesi batas butir dapat meningkatkan kekuatan banyak intermetalik. Mereka sering menawarkan kompromi antara sifat keramik dan logam ketika kekerasan dan / atau ketahanan suhu tinggi cukup penting untuk mengorbankan kekuatan dan kemudahan penggunaan. Mereka juga dapat memiliki sifat magnetik dan kimia yang diinginkan karena susunan internal yang kuat dan ikatan campuran (logam dan kovalen/ionik). Intermetalik telah menghasilkan berbagai pengembangan material baru.

Beberapa contohnya termasuk bahan penyimpanan hidrogen untuk baterai alnico dan nikel logam hidrida. Ni3Al, yang merupakan fase pengerasan dari superalloy berbasis nikel yang terkenal, dan berbagai aluminida titanium juga menarik minat dalam aplikasi bilah turbin, di mana yang terakhir ini juga digunakan dalam jumlah yang sangat kecil untuk pemurnian butiran paduan titanium. Silikon yang mengandung silikon intermetalik digunakan sebagai lapisan penghalang dan kontak dalam mikroelektronika.


Disadur dari: en.wikipedia.org 

Selengkapnya
Mengungkap Rahasia Intermetalik: Paduan Logam dengan Kekuatan Luar Biasa

Pertambangan dan Perminyakan

Sejarah Metalurgi Besi: Dari Meteorit Kuno hingga Zaman Besi

Dipublikasikan oleh Sirattul Istid'raj pada 29 April 2025


Metalurgi besi adalah metalurgi besi dan paduannya. Benda besi prasejarah paling awal yang masih ada, milenium ke-4 SM. Mesir, terbuat dari meteorit besi-nikel. Tidak diketahui kapan dan di mana peleburan besi dari bijih dimulai, tetapi pada akhir milenium ke-2 SM, besi dibuat dari bijih besi dari Yunani ke India dan Afrika sub-Sahara. Penggunaan besi tempa (worked iron) telah dikenal sejak milenium ke-1 SM. dan penyebarannya mendefinisikan Zaman Besi. Di Eropa, pada Abad Pertengahan, para pandai besi menemukan besi tempa dengan menggunakan tempa besi tuang yang baik, yang dalam konteks itu dikenal sebagai besi tuang. Semua proses ini membutuhkan batu bara sebagai bahan bakar.

Pada abad keempat sebelum masehi, India bagian selatan mulai mengekspor baja wootz, dengan kandungan karbon antara besi kasar dan besi tempa, ke Cina kuno, Afrika, Timur Tengah dan Eropa. Bukti arkeologis dari besi tuang dapat ditemukan di Cina pada abad ke-5 SM17. Pada abad ke-19, metode baru dikembangkan untuk produksinya dengan mengkarbonisasi batang besi dalam proses semen. Selama Revolusi Industri, metode baru pembuatan besi batangan muncul yang menggantikan kokas dengan batu bara, dan kemudian diterapkan pada industri baja, mengantarkan era baru penggunaan besi dan baja yang sangat meningkat, yang digambarkan oleh beberapa orang sezamannya sebagai "besi baru". Zaman".

Pada akhir tahun 1850-an, Henry Bessemer menemukan proses pembuatan baja baru yang melibatkan hembusan udara melalui besi cair untuk membakar karbon dan menghasilkan baja ringan. Proses ini dan proses pembuatan baja lainnya pada abad ke-19 kemudian menggantikan besi tempa. Saat ini, besi tempa tidak lagi diproduksi dalam skala komersial, tetapi telah digantikan oleh baja ringan atau baja karbon rendah yang setara secara fungsional.

Besi meteorik

Besi diekstraksi dari paduan besi-nikel, yang membentuk sekitar 6% dari semua meteorit yang jatuh ke Bumi. Sumber tersebut sering kali dapat diidentifikasi dengan andal karena sifat kristal yang unik (pola Widmanstätten) dari bahan tersebut, yang tetap terjaga bahkan ketika logam diproses pada suhu dingin atau rendah. Benda-benda ini termasuk, misalnya, mutiara yang ditemukan di Iran dari milenium ke-5 SM, dan mata tombak serta ornamen dari Mesir kuno dan Sumer dari sekitar 4000 SM. Penggunaan awal ini tampaknya sebagian besar bersifat seremonial atau dekoratif. Besi meteorit sangat langka dan logam ini mungkin sangat mahal, mungkin lebih mahal dari emas. Diketahui bahwa orang Het awal menukar besi (meteor atau lelehan) dengan perak dengan Asyur pada abad-abad pertama milenium kedua SM. dengan kecepatan 40 kali lipat dari berat besi dan #039;.

Besi asli

Besi asli dalam bentuk logam jarang terdapat dalam bentuk inklusi kecil pada batuan basal tertentu. Selain besi meteorit, masyarakat Thule di Greenland juga menggunakan besi asli dari wilayah Disko.

Peleburan besi dan Zaman Besi

Peleburan besi-memisahkan logam yang dapat digunakan dari bijih besi yang teroksidasi-lebih rumit dibandingkan dengan peleburan timah dan tembaga. Sementara logam-logam ini dan paduannya dapat dikerjakan secara dingin atau dilebur dalam tungku yang relatif sederhana (misalnya, tungku keramik) dan dituangkan ke dalam cetakan, besi tuang memerlukan perlakuan panas dan hanya dapat dilebur dalam tungku yang dirancang khusus. Besi adalah bahan tambahan yang umum dalam bijih tembaga, dan bijih besi pernah digunakan sebagai fluks, sehingga tidak mengherankan jika manusia mempelajari teknik besi cair hanya setelah beberapa ribu tahun peleburan perunggu.


Disadur dari: en.wikipedia.org 

Selengkapnya
Sejarah Metalurgi Besi: Dari Meteorit Kuno hingga Zaman Besi

Pertambangan dan Perminyakan

Apa yang dimaksud Metalurgi ekstraktif?

Dipublikasikan oleh Sirattul Istid'raj pada 29 April 2025


Metalurgi ekstraktif adalah cabang teknik metalurgi yang mempelajari proses dan metode ekstraksi logam dari sumber daya mineral alaminya. Bidang ini adalah ilmu material, yang mencakup semua jenis bijih, pencucian, konsentrasi, pemisahan, proses kimiawi, dan ekstraksi logam murni dan paduannya untuk berbagai tujuan, terkadang langsung untuk digunakan sebagai produk jadi, tetapi lebih sering dalam bentuk yang membutuhkan pekerjaan tambahan. untuk mencapai sifat yang sesuai untuk aplikasi tertentu.

Metalurgi besi dan non-besi memiliki spesialisasi yang secara umum dikelompokkan ke dalam kategori pengolahan mineral, hidrometalurgi, pirometalurgi, dan elektrometalurgi, berdasarkan proses yang digunakan untuk mengekstraksi logam. Beberapa proses digunakan untuk mengekstraksi logam yang sama, tergantung pada kesempatan dan persyaratan kimiawi.

Pengolahan mineral

Persiapan mineral dimulai dengan benefisiasi, yang terdiri dari pemecahan mineral menjadi ukuran yang diperlukan tergantung pada konsentrasi yang akan diambil setelahnya, dengan cara menghancurkan, menumbuk, mengayak, dll. Dari situ, logam secara fisik diisolasi dari polusi yang tidak diinginkan, tergantung pada kerangka acara dan atau persiapan bantuan yang disertakan. Bentuk-bentuk divisi memanfaatkan sifat fisik bahan. Sifat-sifat fisik ini dapat mencakup ketebalan, perkiraan dan bentuk molekul, sifat listrik dan daya tarik, dan sifat permukaan. Strategi fisik dan kimia utama menggabungkan pembagian yang menarik, daya apung busa, penyaringan, dll., Di mana kotoran dan bahan yang tidak diinginkan dikeluarkan dari mineral dan mineral dasar logam terkonsentrasi, yang berarti laju logam di dalam mineral diperluas. Konsentrat ini pada saat itu ditangani untuk mengevakuasi kelembaban atau digunakan sebagaimana adanya untuk ekstraksi logam atau dibuat menjadi bentuk dan bentuk yang dapat membantu persiapan, dengan kemudahan dalam perawatan.

Badan mineral sering kali mengandung lebih dari satu logam yang menguntungkan. Tailing dari preparasi sebelumnya dapat digunakan sebagai penyangga dalam preparasi lain untuk mengeluarkan item sekunder dari mineral awal. Lebih jauh lagi, konsentrat dapat mengandung lebih dari satu logam yang menguntungkan. Konsentrat tersebut pada saat itu akan ditangani untuk mengisolasi logam-logam penting menjadi konstituen-konstituen tersendiri.

Hydrometallurgy

Hidrometalurgi adalah proses yang menggunakan larutan air untuk mengekstraksi logam dari bijih. Tahap pertama dari proses hidrometalurgi adalah pelindian, di mana logam mulia dilarutkan dalam larutan air dan/atau pelarut yang sesuai. Setelah larutan dipisahkan dari bijih padat, ekstrak sering kali mengalami berbagai proses pemurnian dan konsentrasi sebelum logam berharga diperoleh kembali baik dalam bentuk logam maupun sebagai senyawa kimia. Proses ini dapat mencakup pengendapan, distilasi, adsorpsi, dan ekstraksi pelarut. Langkah pemulihan akhir dapat melibatkan pengendapan, sementasi atau proses elektrometalurgi. Proses hidrometalurgi terkadang dapat dilakukan secara langsung pada material bijih tanpa langkah pretreatment. Lebih sering, bijih harus diolah terlebih dahulu dengan berbagai langkah pengolahan mineral dan terkadang dengan proses pirometalurgi.

Pyrometallurgy

Pyrometalurgi melibatkan proses suhu tinggi di mana reaksi kimia terjadi antara gas, padatan, dan lelehan. Padatan yang mengandung logam mulia diproses menjadi zat antara atau diubah menjadi unsur atau logamnya untuk diproses lebih lanjut. Proses pirometalurgi yang melibatkan gas dan padatan adalah operasi kalsinasi dan pemanggangan. Proses yang menghasilkan produk cair secara kolektif dikenal sebagai operasi peleburan. Energi yang dibutuhkan untuk mempertahankan suhu tinggi pada proses pirometalurgi mungkin disebabkan oleh sifat eksotermik dari reaksi kimia yang terjadi. Biasanya reaksi ini adalah oksidasi, mis. sulfida menjadi sulfur dioksida. Namun, seringkali diperlukan penambahan energi pada proses tersebut dengan membakar bahan bakar atau, dalam beberapa kasus proses peleburan, secara langsung menggunakan listrik.

Electrometallurgy

Elektrometalurgi melibatkan proses metalurgi yang berlangsung dalam beberapa bentuk sel elektrolitik. Proses elektrometalurgi yang paling umum adalah pemulihan elektrolitik dan pemurnian listrik. Proses elektrolitik adalah proses elektrolitik yang digunakan untuk mengambil kembali logam dalam larutan air, biasanya dari bijih yang telah mengalami satu atau lebih proses hidrometalurgi. Logam yang diminati ditutupi oleh katoda, sedangkan anoda adalah konduktor listrik yang lembam. Pembersihan listrik digunakan untuk melarutkan anoda logam yang kotor (biasanya dari peleburan) dan menghasilkan katoda yang sangat bersih. Elektrolisis garam cair adalah proses elektrometalurgi lain di mana logam mulia dilarutkan ke dalam garam cair yang bertindak sebagai elektrolit, dan logam mulia diendapkan pada katoda sel. Proses elektrolisis garam cair dilakukan pada suhu yang cukup untuk mempertahankan elektrolit dan logam yang diproduksi dalam keadaan cair. Ruang lingkup elektrometalurgi tumpang tindih secara signifikan dengan hidrometalurgi dan (dalam kasus elektrolisis garam cair) pirometalurgi. Selain itu, fenomena elektrokimia memainkan peran penting dalam banyak proses pengolahan mineral dan hidrometalurgi.

Ionometallurgy

Pengolahan mineral dan ekstraksi logam merupakan proses yang sangat intensif energi, yang tidak terkecuali menghasilkan limbah padat dan air limbah dalam jumlah besar, yang juga membutuhkan energi untuk pemrosesan dan pembuangan lebih lanjut. Selain itu, seiring dengan meningkatnya permintaan logam, industri metalurgi harus bergantung pada sumber material dengan kandungan logam yang lebih rendah baik dari bahan baku primer (misalnya bijih mineral) dan/atau sekunder (misalnya terak, tailing, sampah kota). Oleh karena itu, cara-cara yang lebih selektif, efisien dan ramah lingkungan untuk memproses mineral dan logam harus dikembangkan dalam pertambangan dan daur ulang limbah. Operasi pengolahan mineral pertama-tama diperlukan untuk memusatkan fase mineral yang diinginkan dan membuang material yang tidak diinginkan yang terikat secara fisik atau kimiawi pada bahan baku tertentu.


Disadur dari: en.wikipedia.org 

Selengkapnya
Apa yang dimaksud Metalurgi ekstraktif?

Pertambangan dan Perminyakan

Tipe Baja Tahan Karat antara lain Austenitik

Dipublikasikan oleh Sirattul Istid'raj pada 29 April 2025


Baja tahan karat austenitik adalah salah satu dari lima kelas baja tahan karat berdasarkan struktur kristal (selain baja yang diperkeras feritik, martensit, dupleks, dan presipitasi). Struktur kristal utamanya adalah austenit (kubus berpusat pada permukaan) dan ini mencegah pembentukan baja selama perlakuan panas dan menjadikannya pada dasarnya non-magnetik. Struktur ini dicapai dengan menambahkan unsur penstabil austenit seperti nikel, mangan, dan nitrogen dalam jumlah yang cukup. Keluarga paduan Incoloy termasuk dalam kelas baja tahan karat superaustenitik.

Sifat baja tahan karat austenitik

Keluarga baja tahan karat austenitik terdiri dari dua subkelompok: seri AISI 300 dan seri AISI 200. Meskipun seri 300 mengandalkan penambahan nikel untuk struktur austenitiknya, seri 200 menggantikan nikel dengan mangan dan nitrogen, meskipun kandungan nikelnya masih sedikit, menjadikannya pilihan yang hemat biaya.

Dalam kelompok baja tahan karat austenitik, seri 300 lebih banyak digunakan. Tipe 304, juga dikenal sebagai baja 18/8 atau A2, adalah baja yang paling umum dan banyak digunakan untuk barang-barang seperti peralatan masak dan peralatan dapur. Tipe 316, yang paling umum berikutnya, mengandung molibdenum untuk meningkatkan ketahanan terhadap asam dan korosi lokal.

Kandungan nitrogen yang lebih tinggi pada seri 200 memberikan kekuatan mekanik yang lebih tinggi dibandingkan seri 300. Paduan 20 (Carpenter 20) adalah baja tahan karat austenitik yang dikenal karena ketahanannya yang sangat baik terhadap lingkungan agresif seperti asam sulfat panas dan retak korosi akibat asam sulfat.

Baja tahan karat austenitik tahan panas dapat menahan suhu tinggi di atas 600 °C dan harus mempertahankan sifat mekanik dan tahan korosi, biasanya melalui penambahan kromium, silikon, dan aluminium. Metode pengujian tak rusak seperti inspeksi penetran pewarna dan pengujian arus eddy dapat digunakan untuk menilai baja tahan karat austenitik, sedangkan inspeksi partikel magnetik tidak sesuai.

Disadur dari: en.wikipedia.org 

Selengkapnya
Tipe Baja Tahan Karat antara lain Austenitik

Pertambangan dan Perminyakan

Lebih Mengerti Mengenai Material Paduan Tembaga yaitu Kuningan (Brass)

Dipublikasikan oleh Sirattul Istid'raj pada 29 April 2025


Kuningan adalah kombinasi tembaga (Cu) dan seng (Zn), yang kadarnya dapat diubah untuk mendapatkan warna dan sifat mekanik, listrik, akustik, dan kimia yang berbeda, tetapi tembaga biasanya memiliki kadar yang lebih besar. Digunakan sejak zaman prasejarah, ini bisa menjadi campuran substitusi: sedikit pun dari dua unsur dapat saling menggantikan di dalam struktur permata yang sama.

Kuningan sebanding dengan perunggu, amalgam tembaga yang mengandung timah, bukan seng. Baik perunggu maupun kuningan mungkin mengandung sedikit komponen lain seperti arsenik (As), timbal (Pb), fosfor (P), aluminium (Al), mangan (Mn), dan silikon (Si). Memang benar, kualifikasi antara kedua kombinasi tersebut kurang dapat diandalkan dan jelas, dan semakin banyak ruang pameran yang menggunakan istilah yang lebih umum "campuran tembaga".

Kuningan telah lama menjadi kain yang populer karena tampilannya yang berkilau seperti emas dan masih digunakan untuk penarik laci dan gagang pintu. Ini juga telah banyak digunakan untuk membuat cetakan dan peralatan karena titik lembeknya, kemampuan kerja yang tinggi (baik dengan instrumen tangan dan dengan mesin pembubut dan pengolah canggih), ketangguhan, dan konduktivitas listrik dan panas. Kuningan dengan kandungan tembaga yang lebih tinggi memiliki warna yang lebih lembut dan cemerlang; namun yang mengandung lebih sedikit tembaga dan lebih banyak seng akan lebih keras dan warnanya lebih cemerlang.

Kuningan masih umum digunakan dalam aplikasi yang memerlukan ketahanan erosi dan kontak moo, seperti kunci, poros, roda gigi, orientasi, selubung amunisi, ritsleting, pipa ledeng, sambungan selang, katup, serta colokan dan perlengkapan listrik. Ini digunakan secara luas untuk pembangkangan melodi seperti terompet dan lonceng. Komposisi kuningan, pada umumnya 66% tembaga dan 34% seng, menjadikannya pengganti tembaga yang baik dalam perhiasan ansambel dan cetakan, karena menunjukkan ketahanan yang lebih besar terhadap erosi. Kuningan tidak sesulit perunggu, sehingga tidak cocok untuk sebagian besar senjata dan perangkat. Juga tidak masuk akal untuk pekerjaan di bidang kelautan, karena seng bereaksi dengan mineral dalam air asin, menghilangkan tembaga yang dapat ditembus; kuningan laut, termasuk timah, menjaga jarak strategis dari hal ini, seperti halnya perunggu.

Kuningan sering digunakan dalam situasi di mana kilauan tidak boleh terjadi, seperti pada perlengkapan dan perangkat yang menggunakan bahan yang mudah terbakar atau berbahaya.

Sifat - sifat materi:

Kuningan, karena lebih mudah dibentuk dibandingkan perunggu atau seng, memiliki titik leleh yang relatif rendah, berkisar antara 900 hingga 940 °C (1.650 hingga 1.720 °F), bergantung pada komposisinya. Karakteristik ini, beserta sifat alirannya, menjadikan kuningan sebagai bahan favorit untuk pengecoran. Mengubah proporsi tembaga dan seng memungkinkan penyesuaian sifat kuningan, menghasilkan varietas keras dan lunak. Kuningan memiliki massa jenis berkisar antara 8,4 hingga 8,73 g/cm3.

Saat ini, sekitar 90% paduan kuningan didaur ulang, karena sifatnya yang non-feromagnetik, sehingga memudahkan pemisahan dari potongan besi menggunakan magnet. Potongan kuningan mengalami peleburan dan pembentukan kembali menjadi billet, yang kemudian diekstrusi menjadi bentuk dan ukuran yang diinginkan. Karena kelembutan umumnya, kuningan sering kali dapat dikerjakan tanpa cairan pemotongan, meskipun ada pengecualian.

Penambahan aluminium meningkatkan kekuatan dan ketahanan korosi kuningan, membentuk lapisan pelindung aluminium oksida di permukaan. Timah menawarkan manfaat serupa, terutama dalam aplikasi kelautan (kuningan angkatan laut), sementara kombinasi besi, aluminium, silikon, dan mangan berkontribusi terhadap ketahanan terhadap keausan. Kandungan besi hanya 1% dalam kuningan memberikan sifat magnetis yang nyata.

Kuningan rentan terhadap korosi jika terdapat uap air, klorida, asetat, amonia, dan asam tertentu. Korosi ini terjadi ketika tembaga bereaksi dengan belerang, membentuk lapisan tembaga sulfida berwarna coklat, yang selanjutnya dapat teroksidasi di udara menghasilkan patina karbonat tembaga berwarna hijau-biru. Tergantung pada pembentukannya, lapisan patina ini dapat melindungi kuningan di bawahnya dari kerusakan lebih lanjut.

Meskipun terdapat perbedaan potensial listrik yang signifikan antara tembaga dan seng, paduan kuningan tidak mengalami korosi galvanik internal karena tidak adanya lingkungan korosif di dalam campuran. Namun, kontak dengan logam yang lebih mulia seperti perak atau emas dalam lingkungan seperti itu dapat menyebabkan korosi galvanik pada kuningan, sedangkan kontak dengan logam yang kurang mulia seperti seng atau besi dapat melindungi kuningan dari korosi.
 

Disadur dari: en.wikipedia.org 

Selengkapnya
Lebih Mengerti Mengenai Material Paduan Tembaga yaitu Kuningan (Brass)

Pertambangan dan Perminyakan

Apa itu elemen Baja karbon?

Dipublikasikan oleh Sirattul Istid'raj pada 29 April 2025


Baja karbon (Carbon steel) adalah baja dengan kandungan karbon sekitar 0,05 hingga 2,1 persen beratnya. Definisi baja karbon menurut American Iron and Steel Institute (AISI) menyatakan:

  • Tidak ada kandungan minimum yang ditetapkan atau diwajibkan untuk kromium, kobalt, molibdenum, nikel, niobium, titanium, tungsten, vanadium, zirkonium, atau elemen lainnya. Diinginkan untuk mencapai efek paduan.
  • Kandungan tembaga minimum yang ditentukan tidak melebihi 0,40%.
  • Atau nilai maksimum yang ditentukan dari salah satu unsur berikut tidak melebihi persentase yang ditentukan: Mangan 1,65%. Silikon 0,60%; Tembaga 0,60%.

Istilah baja karbon juga dapat digunakan untuk baja selain baja tahan karat; dalam aplikasi ini baja karbon mungkin mengandung baja paduan. Baja karbon tinggi memiliki banyak kegunaan berbeda, seperti mesin penggilingan, pisau (seperti pahat) dan kawat yang kuat. Aplikasi ini memerlukan struktur mikro yang jauh lebih baik sehingga meningkatkan ketangguhan.

Ketika kandungan karbon meningkat, baja menjadi lebih keras dan kuat melalui perlakuan panas. Namun, ini kurang ulet. Terlepas dari perlakuan panas, kandungan karbon yang lebih tinggi mengurangi kemampuan las. Pada baja karbon, peningkatan kandungan karbon menurunkan titik leleh.

Sifat, karakteristik dan dampak lingkungan

  • Baja karbon sering dibagi menjadi dua kategori utama: baja karbon rendah dan baja karbon tinggi.
  • Baja karbon mungkin juga mengandung unsur lain seperti mangan, fosfor, belerang, dan silikon, yang dapat mempengaruhi sifat-sifatnya.
  • Baja karbon mudah dikerjakan dan dilas, membuatnya serbaguna untuk berbagai aplikasi. Itu juga dapat diberi perlakuan panas untuk meningkatkan kekuatan, kekerasan dan daya tahan.
  • Baja karbon rentan terhadap karat dan korosi, terutama di lingkungan dengan kelembaban tinggi dan garam.
  • Baja karbon dapat dilindungi dari korosi dengan melapisinya dengan cat, pernis, atau bahan pelindung lainnya.
  • Sebagai alternatif, dapat dibuat dari paduan baja tahan karat yang mengandung kromium, yang memberikan ketahanan korosi yang sangat baik.
  • Baja karbon dapat dicampur dengan unsur lain untuk meningkatkan sifat-sifatnya, seperti: B. Tambahkan kromium dan/atau nikel untuk meningkatkan ketahanan terhadap korosi dan oksidasi, atau menambahkan molibdenum untuk meningkatkan kekuatan dan ketangguhan pada suhu tinggi.
  • Baja karbon merupakan material yang ramah lingkungan karena mudah didaur ulang dan dapat digunakan kembali dalam berbagai aplikasi. Logam ini juga hemat energi dalam produksinya, membutuhkan lebih sedikit energi dibandingkan logam lain seperti aluminium dan tembaga.

Tipe baja karbon

  1. Baja ringan, juga dikenal sebagai baja karbon rendah, mengandung sedikit karbon, sehingga kuat dan tangguh namun tidak mudah marah. Ini banyak digunakan karena keterjangkauannya dan sifat materialnya yang dapat diterima untuk berbagai aplikasi. Dengan kandungan karbon sekitar 0,05-0,30%, baja ringan bersifat lunak dan ulet, meskipun kekuatan tariknya relatif rendah. Kepadatannya sekitar 7,85 g/cm3, dan memiliki modulus Young sebesar 200 GPa.
  2. Baja karbon rendah menunjukkan titik leleh yang habis, ditandai dengan dua titik leleh dimana hasil material turun secara signifikan setelah titik leleh atas. Mereka lebih mudah dibentuk dingin dan biasa digunakan dalam aplikasi seperti suku cadang mobil, pipa, konstruksi, dan kaleng makanan.
  3. Baja dengan tegangan tarik tinggi, yang ditemukan pada kisaran karbon menengah paling bawah, mengandung unsur paduan tambahan untuk meningkatkan kekuatan, sifat aus, atau kekuatan tarik. Paduan ini termasuk kromium, molibdenum, silikon, mangan, nikel, dan vanadium, dengan pengotor terbatas seperti fosfor dan belerang.
  4. Baja karbon tinggi, dengan kandungan karbon berkisar antara 0,30% hingga 1,70%, dapat menjalani perlakuan panas dan seringkali memiliki sedikit pengotor yang mempengaruhi kualitasnya. Mangan ditambahkan untuk meningkatkan kemampuan pengerasan, dan meskipun baja karbon tinggi memiliki keuletan dan kemampuan las yang terbatas, baja ini digunakan dalam aplikasi khusus seperti pegas dan kabel berkekuatan tinggi.
     

Disadur dari: en.wikipedia.org 

Selengkapnya
Apa itu elemen Baja karbon?
« First Previous page 583 of 1.408 Next Last »