Farmasi

Mengenal Chemical industry

Dipublikasikan oleh Jovita Aurelia Sugihardja pada 17 April 2024


Industri kimia terdiri dari perusahaan dan organisasi lain yang mengembangkan dan memproduksi bahan kimia industri, khusus dan lainnya. Inti perekonomian modern adalah konversi bahan mentah (minyak, gas alam, gas, air, logam, mineral) menjadi bahan kimia untuk produk industri dan konsumen. Hal ini mencakup industri petrokimia, seperti polimer untuk plastik dan serat sintetis. Zat murni seperti asam dan basa; pestisida seperti pupuk, pestisida dan herbisida; Kategori lainnya mencakup gas industri, bahan kimia khusus, dan obat-obatan.

Banyak profesional, termasuk insinyur kimia, ahli kimia, dan teknisi laboratorium, bekerja di industri kimia.

Sejarah

Meskipun bahan kimia telah diciptakan dan digunakan sepanjang sejarah, lahirnya industri kimia berat (industri yang memproduksi bahan kimia dalam jumlah besar untuk berbagai kegunaan) bertepatan dengan dimulainya Revolusi Industri. .

Revolusi Industri

Salah satu bahan kimia pertama yang diproduksi dalam jumlah besar melalui proses industri adalah asam sulfat. Pada tahun 1736, ahli kimia Joshua Ward menemukan proses yang memanaskan belerang dan nitrogen untuk mengembunkannya dan menggabungkannya dengan air. Ini adalah produksi asam sulfat skala besar yang pertama. John Roebuck dan Samuel Garbett mendirikan pabrik skala besar pertama di Prestonpans, Skotlandia pada tahun 1749, menggunakan ruang ber-AC untuk produksi asam sulfat.

Pada awal abad ke-19, jaringan didisinfeksi dengan cara mengawetkannya dengan urin tua atau susu asam, dan dengan menjemurnya di bawah sinar matahari dalam jangka waktu lama, karena sangat beracun. Asam sulfat mulai digunakan sebagai bahan penyempurna, seperti kapur, pada pertengahan abad ke-20, namun penemuan pemutih oleh Charles Tennantlah yang mendorong lahirnya industri kimia besar pertama. Bubuk ini dibuat dengan mereaksikan klorin dengan kapur kering, dan diperoleh hasil yang kecil dan berhasil. Dia membuka Pabrik Kimia St Rollox di utara Glasgow dan meningkatkan produksi dari 52 ton pada tahun 1799 menjadi hampir 10.000 ton hanya lima tahun kemudian.

Natrium karbonat telah digunakan untuk membuat kaca, tekstil, sabun dan kertas sejak zaman kuno, dan sumber alkali adalah abu kayu di Eropa Barat. Pada abad ke-18, sumber ini tidak lagi menguntungkan karena hutannya, dan Akademi Ilmu Pengetahuan Perancis menganugerahkan hadiah sebesar 2.400 pound untuk metode produksi alkali dari garam laut (natrium klorida). Proses Leblanc dipatenkan pada tahun 1791 oleh Nicolas Leblanc, yang kemudian membangun pabrik Leblanc di Saint-Denis. Kekayaannya ditolak oleh Revolusi Perancis.

Proses LeBlanc menjadi populer di Inggris. William Losh mendirikan pabrik soda pertama di Inggris di pabrik Losh, Wilson dan Bell di Sungai Tyne pada tahun 1816, tetapi pabrik tersebut dibatasi oleh tingginya biaya produksi garam hingga tahun 1824. Penerapan tarif ini menyebabkan pertumbuhan pesat pabrik soda di Inggris. industri. Pabrik kimia James Muspratt di Liverpool dan pabrik Charles Tennant dekat Glasgow menjadi pusat produksi bahan kimia terbesar di dunia. Pada tahun 1870-an, produksi soda di Inggris mencapai 200.000 ton, lebih banyak dibandingkan negara lain di dunia..

Pabrik-pabrik besar ini mulai memproduksi lebih banyak bahan kimia seiring dengan matangnya Revolusi Industri. Awalnya, produksi soda melepaskan sejumlah besar limbah alkali ke lingkungan, yang memicu salah satu undang-undang lingkungan hidup pertama yang disahkan pada tahun 1863. Undang-undang tersebut mengatur kontrol ketat terhadap pabrik dan mengenakan denda yang besar pada penyeberangan perbatasan. polusi Metode ini dirancang untuk menghasilkan produk sampingan yang berguna dari alkali.

Proses Solvay dikembangkan oleh ahli kimia industri Belgia Ernest Solvay pada tahun 1861. Pada tahun 1864, Solvay dan saudaranya Alfred membangun pabrik di Charleroi, Belgia. Pada tahun 1874 mereka memperluas ke pabrik yang lebih besar di Nancy, Perancis. Metode baru ini terbukti lebih ekonomis dan lebih sedikit polusi dibandingkan metode Leblanc, dan penggunaannya pun tersebar luas. Pada tahun yang sama, Ludwig Mond mengunjungi Solvay untuk mendapatkan hak atas proses tersebut dan, bersama John Brunner, mendirikan Brunner, Mond and Co., dan membangun pabrik Solvay di Winnington, Inggris. Mond membantu mengubah proses Solvay menjadi sukses secara komersial. Dia membuat beberapa perbaikan antara tahun 1873 dan 1880 yang menghilangkan produk sampingan yang dapat mempengaruhi produksi natrium karbonat dalam prosesnya.

Produksi produk kimia dari bahan bakar fosil dimulai secara besar-besaran pada awal abad ke-19. Residu tar batubara dan amonia cair dari produksi gas batubara untuk penerangan gas diproses pada tahun 1822 di Bonnington Chemical Works di Edinburgh untuk menghasilkan minyak bumi, minyak pitch (kemudian kreosot), pitch, karbon hitam (jelaga) dan garam-amonia. . (amonium klorida). Setelah itu, pupuk amonium sulfat, pelapis aspal, minyak kokas dan kokas ditambahkan ke lini produk.

Ekspansi dan Pematangan

Pada akhir abad ke-19, jumlah produksi dan variasi bahan kimia yang dihasilkan meledak. Industri kimia besar lahir di Jerman dan kemudian di Amerika Serikat.

Produksi pupuk pertanian dirintis oleh Sir John Lawes di pusat penelitian yang dibangun khusus di Rothamsted. Pada tahun 1840-an, ia mendirikan pabrik besar di dekat London untuk produksi kapur superfosfat. Proses vulkanisasi karet dipatenkan pada tahun 1840-an oleh Charles Goodyear di Amerika Serikat dan Thomas Hancock di Inggris. Pewarna sintetis pertama ditemukan oleh William Henry Perkin di London. Dia mengubah sebagian anilin menjadi campuran kasar yang bila diekstraksi dengan alkohol, menghasilkan zat berwarna ungu tua. Ia juga mengembangkan parfum sintetis pertama. Industri Jerman dengan cepat mendominasi bidang pewarna sintetis. Tiga perusahaan besar BASF, Bayer dan Hoechst memproduksi beberapa ratus pewarna berbeda. Pada tahun 1913, industri Jerman memproduksi hampir 90% pewarna dunia dan menjual sekitar 80% produksinya ke luar negeri. Di Amerika Serikat, penggunaan elektrokimia oleh Herbert Henry Dow untuk memproduksi bahan kimia dari air garam merupakan kesuksesan komersial yang membantu meningkatkan industri kimia negara tersebut.

Industri petrokimia dapat ditelusuri kembali ke ahli kimia Skotlandia James Young dan Abraham Pineo Gesner dari Kanada. Plastik pertama ditemukan oleh ahli metalurgi Inggris Alexander Parkes. Pada tahun 1856 ia mematenkan Parkesin, seluloid berbahan dasar nitroselulosa yang diolah dengan berbagai pelarut. Dipamerkan di Pameran Internasional London tahun 1862, bahan ini membayangkan banyak kegunaan plastik secara estetika dan modern. William Lever dan saudaranya James memulai produksi industri sabun dari minyak nabati di Lancashire pada tahun 1885, berdasarkan proses kimia modern William Hough Watson menggunakan gliserin dan minyak nabati.

Pada tahun 1920an, perusahaan kimia bergabung menjadi konglomerat besar; IG Farben di Jerman, Rhône-Poulenc di Perancis dan Imperial Chemical Industries di Inggris Raya. Dupont menjadi perusahaan kimia besar di Amerika pada awal abad ke-20.

Produk

Polimer dan plastik seperti polietilen, polipropilen, polivinil klorida, polietilen tereftalat, polistiren, dan polikarbonat menyumbang sekitar 80% produksi industri dunia. Bahan kimia digunakan di banyak produk konsumen yang berbeda dan juga digunakan di banyak industri berbeda. Ini termasuk pertanian, konstruksi dan jasa. Pelanggan utama industri ini adalah produk karet dan plastik, tekstil, aksesoris, penyulingan minyak, pulp dan kertas, serta logam primer. Bahan kimia merupakan bisnis global senilai hampir $5 triliun, dengan perusahaan kimia UE dan AS sebagai produsen terbesar di dunia.

Penjualan komersial bahan kimia dapat dibagi menjadi beberapa kategori besar, termasuk bahan kimia dasar (sekitar 35-37% dari produksi dolar), ilmu hayati (30%), bahan kimia khusus (20-25%) dan barang konsumsi (sekitar 10) . %).

Ringkasan

Bahan kimia dasar atau "bahan kimia berguna"; adalah kategori kimia luas yang mencakup polimer, produk massal dan produk antara petrokimia, turunan lainnya dan industri dasar, bahan kimia anorganik, dan pupuk.

Polimer merupakan segmen pendapatan terbesar dan mencakup semua kategori plastik dan serat buatan. Pasar plastik utama adalah kemasan, diikuti oleh konstruksi rumah, kontainer, peralatan rumah tangga, pipa, transporter, mainan dan permainan.

  • Produk polimer terbesar berdasarkan volume, polietilen (PE), terutama digunakan dalam film kemasan dan pasar lainnya seperti botol susu, wadah dan tabung.

  • Polivinil klorida (PVC), produk berskala besar lainnya, digunakan di pasar konstruksi terutama untuk pipa, bahan penutup dinding dan pada tingkat lebih rendah untuk bahan transportasi dan pengemasan.

  • Polipropilena (PP), yang volumenya serupa dengan PVC, digunakan di pasar mulai dari pengemasan, peralatan dan wadah hingga pakaian dan karpet.

  • Polystyrene (PS), plastik bervolume tinggi lainnya, digunakan terutama dalam peralatan dan kemasan, serta mainan dan rekreasi.

  • Serat buatan yang utama adalah poliester, nilon, polipropilen, dan akrilik, dan digunakan, misalnya, dalam pakaian, perabot rumah tangga, serta aplikasi industri dan konsumen lainnya.

Bahan baku utama polimer adalah petrokimia curah seperti etilen, propilena, dan benzena.

Petrokimia dan bahan kimia antara sebagian besar dihasilkan dari fraksi gas minyak cair (LPG), gas alam, dan minyak mentah. Produk curah meliputi etilen, propilena, benzena, toluena, xilena, metanol, vinil klorida monomer (VCM), stirena, butadiena, dan etilen oksida. Bahan kimia dasar atau komoditas ini merupakan bahan awal yang digunakan dalam produksi banyak polimer dan bahan kimia organik lain yang lebih kompleks, terutama yang ditujukan untuk digunakan dalam kelas kimia khusus.

Produk turunan dan produk dasar lainnya termasuk karet sintetis, surfaktan, cat dan pigmen, terpentin, resin, karbon hitam, bahan peledak dan produk karet dan mencakup sekitar 20 persen penjualan bahan kimia dasar di luar negeri.

Bahan kimia anorganik (sekitar 12% dari omset) adalah kategori bahan kimia tertua. Produknya meliputi garam, klorin, batu sabun, soda abu, asam (seperti asam nitrat, asam fosfat, dan asam sulfat), titanium dioksida, dan hidrogen peroksida.

Pupuk merupakan kategori terkecil (sekitar 6 persen) dan mengandung bahan kimia fosfat, amonia, dan kalium.

Ilmu Hayati

Ilmu Hayati (sekitar 30% dari dolar bisnis kimia) mencakup serangkaian bahan kimia dan biologi, obat-obatan, diagnostik, produk kesehatan hewan, vitamin dan pestisida. Meskipun volume produksinya jauh lebih kecil dibandingkan industri kimia lainnya, harganya cenderung tinggi – lebih dari sepuluh dolar per pon – dengan tingkat pertumbuhan 1,5 hingga 6 kali PDB, dan biaya penelitian dan pengembangan sebesar 15 hingga 25 persen dari penjualan. Produk ilmu hayati umumnya diproduksi dengan standar tinggi dan diawasi secara ketat oleh lembaga pemerintah seperti Badan Pengawas Obat dan Makanan. Insektisida, juga disebut "agen perlindungan tanaman", mencakup sekitar 10% dari kelompok ini dan mencakup herbisida, insektisida, dan fungisida.

Bahan Kimia Khusus

Bahan Kimia Khusus adalah kelas bahan kimia yang bernilai relatif tinggi dan berkembang pesat dengan pasar produk akhir yang beragam. Tingkat pertumbuhan umumnya adalah satu hingga tiga kali PDB lebih dari satu dolar per pon. Mereka biasanya dicirikan oleh aspek inovatifnya. Produk dijual karena propertinya, bukan karena bahan kimia yang dikandungnya. Produk-produknya meliputi bahan kimia elektronik, gas industri, perekat dan penyegel serta pelapis, bahan kimia pembersih industri dan fasilitas, serta katalis. Pada tahun 2012, pasar bahan kimia khusus global senilai $546 miliar, tidak termasuk bahan kimia, terdiri dari 33% cat, pelapis dan perawatan permukaan, 27% polimer canggih, 14% perekat dan penyekat, 13% bahan aditif, serta 13% pigmen dan tinta.

Bahan kimia khusus dijual sebagai bahan kimia kuat atau kuat. Kadang-kadang merupakan campuran sediaan, bukan "bahan kimia", yang hampir selalu merupakan produk molekul tunggal.

Barang konsumsi

Barang konsumsi meliputi penjualan langsung produk kimia seperti sabun, deterjen dan kosmetik. Tingkat pertumbuhan umumnya adalah 0,8-1,0 kali PDB.

Konsumen jarang bersentuhan dengan bahan kimia dasar. Polimer dan bahan kimia khusus adalah bahan yang ditemui di mana-mana setiap hari. Misalnya plastik, produk pembersih, kosmetik, cat dan pelapis, elektronik, mobil, dan bahan yang digunakan dalam konstruksi rumah.[15] Perusahaan kimia memasarkan produk khusus ini ke industri hilir seperti pestisida, polimer khusus, bahan kimia elektronik, surfaktan, bahan kimia konstruksi, bahan pembersih industri, perasa dan wewangian, pelapis khusus, tinta cetak, polimer yang larut dalam air, bahan tambahan makanan, dan bahan kimia kertas, bahan kimia ladang minyak, perekat plastik, perekat dan penyegel, bahan kimia kosmetik, bahan kimia penyedia air, katalis dan bahan kimia tekstil. Perusahaan kimia jarang mengirimkan produk ini langsung ke konsumen.

Dewan Kimia Amerika setiap tahun menyusun tabel volume produksi 100 bahan kimia terbesar di Amerika Serikat. Pada tahun 2000, produksi gabungan dari 100 bahan kimia teratas adalah 502 juta ton, pada tahun 1990 menjadi 397 juta ton. Bahan kimia anorganik biasanya menyumbang volume terbesar, namun pendapatan dolar jauh lebih rendah karena harganya yang rendah. Dari 100 bahan kimia pada tahun 2000, 11 teratas adalah asam sulfat (44 juta ton), nitrogen (34), etilen (28), oksigen (27), kapur (22), amonia (17), propilena (16), polietilen (15), klorin (13), asam fosfat (13) dan diammonium fosfat (12).

Perusahaan

Produsen bahan kimia utama saat ini adalah perusahaan global dengan operasi internasional dan pabrik di banyak negara. Di bawah ini adalah daftar 25 perusahaan kimia teratas berdasarkan penjualan bahan kimia pada tahun 2015. (Catatan: Penjualan bahan kimia hanya sebagian kecil dari total penjualan beberapa perusahaan.)

Perusahaan Kimia Teratas berdasarkan Penjualan Bahan Kimia pada tahun 2015

Teknik

Dari sudut pandang seorang insinyur kimia, industri kimia melibatkan penggunaan proses kimia, seperti reaksi kimia dan metode pemurnian, untuk menghasilkan berbagai bahan padat, cair, dan gas. Sebagian besar produk ini digunakan untuk membuat barang lain, meskipun sebagian kecil langsung disalurkan ke konsumen. Contoh barang konsumsi meliputi pelarut, pestisida, deterjen, soda cuci, dan semen portland.

Industri ini mencakup produsen bahan kimia industri anorganik dan organik, produk keramik, petrokimia, bahan kimia pertanian, polimer dan karet (elastomer), petrokimia (minyak, lemak dan lilin), bahan peledak, wewangian dan perasa. Contoh produk tersebut diberikan pada tabel di bawah ini.

Industri terkait meliputi industri minyak, kaca, cat, tinta, sealant, perekat, farmasi dan makanan.

Proses kimia, seperti reaksi kimia, terjadi di pabrik kimia untuk membentuk zat baru di berbagai jenis reaktor. Dalam banyak kasus, reaksi berlangsung dalam peralatan khusus tahan korosi pada suhu dan tekanan tinggi menggunakan katalis. Produk dari reaksi-reaksi tersebut dipisahkan dengan menggunakan berbagai teknik, antara lain distilasi, terutama distilasi fraksional, pengendapan, kristalisasi, adsorpsi, filtrasi, sublimasi dan pengeringan.

Proses dan produk biasanya diuji selama dan setelah produksi menggunakan instrumen khusus dan laboratorium kendali mutu di lokasi untuk memastikan pengoperasian yang aman dan kepatuhan produk terhadap spesifikasi yang disyaratkan. Semakin banyak organisasi industri yang menerapkan perangkat lunak kepatuhan bahan kimia untuk menjaga kualitas produk dan standar manufaktur. Produk dikemas dan diangkut dengan berbagai cara, termasuk pipa, tanker dan tangki (untuk bahan padat dan cair), silinder, drum, botol dan kotak. Industri kimia sering kali memiliki laboratorium penelitian dan pengembangan untuk pengembangan dan pengujian produk dan proses. Fasilitas ini dapat mencakup fasilitas pengujian, dan fasilitas penelitian tersebut dapat berlokasi di lokasi selain fasilitas produksi.

Produksi Bahan Kimia Dunia

Skala industri kimia cenderung terorganisir dari jumlah besar (petrokimia dan bahan kimia dasar), hingga bahan kimia khusus dan hingga bahan kimia terkecil.

Unit produksi bahan kimia dasar dan petrokimia berlokasi di pabrik pengolahan produk individual yang beroperasi secara berkelanjutan. Tidak semua produk atau pasokan petrokimia diproduksi di satu tempat, namun kelompok bahan terkait sering kali bertujuan untuk mendorong simbiosis industri dan efisiensi bahan, energi dan komoditas serta skala ekonomi lainnya.

Bahan kimia yang diproduksi dalam volume terbesar diproduksi di beberapa fasilitas produksi di seluruh dunia, seperti Texas dan Louisiana di Gulf Coast Amerika Serikat, Teesside (Inggris) dan Rotterdam di Belanda. Fasilitas manufaktur besar seringkali mempunyai kelompok departemen manufaktur yang berbagi fasilitas umum dan infrastruktur skala besar seperti pembangkit listrik, fasilitas pelabuhan, dan terminal jalan raya dan kereta api. Untuk menggambarkan klaster dan integrasi di atas, sekitar 50% bahan baku petrokimia dan kimia Inggris diproduksi di Klaster Industri Proses Timur Laut Inggris di Teesside.

Bahan kimia khusus dan bahan kimia halus sebagian besar diproduksi dalam proses batch terpisah. Produsen-produsen ini seringkali berlokasi di lokasi yang serupa, namun dalam banyak kasus mereka berlokasi di kawasan multifungsi..

Benua dan Negara

Terdapat 170 perusahaan kimia besar di Amerika Serikat. Mereka beroperasi secara internasional dengan lebih dari 2.800 lokasi di luar Amerika Serikat dan 1.700 anak perusahaan atau afiliasi yang beroperasi di luar negeri. Produksi bahan kimia AS adalah $750 miliar per tahun. Industri Amerika mempunyai surplus perdagangan yang besar dan mempekerjakan lebih dari satu juta orang di Amerika Serikat saja. Industri kimia juga merupakan konsumen energi terbesar kedua di industri dan menghabiskan lebih dari $5 miliar per tahun untuk mengurangi polusi.

Di Eropa, sektor kimia, plastik, dan karet merupakan salah satu industri terbesar. Bersama-sama, mereka menciptakan sekitar 3,2 juta lapangan kerja di lebih dari 60.000 perusahaan. Sejak tahun 2000, industri kimia sendiri bertanggung jawab atas 2/3 surplus perdagangan produk UE..

Pada tahun 2012, pangsa industri kimia dalam nilai tambah industri manufaktur UE adalah 12%. Eropa tetap menjadi kawasan perdagangan bahan kimia terbesar di dunia, menyumbang 43 persen ekspor global dan 37 persen impor, meskipun angka terbaru menunjukkan bahwa Asia menyumbang 34 persen ekspor dan 37 persen impor. Meskipun demikian, Eropa masih memiliki surplus perdagangan dengan seluruh wilayah di dunia kecuali Jepang dan Tiongkok, yang memiliki neraca perdagangan bahan kimia pada tahun 2011. Surplus perdagangan Eropa dengan negara-negara lain di dunia saat ini berjumlah 41,7 miliar euro.

Dalam 20 tahun antara tahun 1991 dan 2011, omset industri kimia Eropa meningkat dari 295 miliar euro menjadi 539 miliar euro, yang berarti pertumbuhan berkelanjutan. Meskipun demikian, pangsa industri Eropa di pasar kimia dunia turun dari 36% menjadi 20%. Hal ini disebabkan oleh peningkatan besar dalam produksi dan penjualan di pasar negara berkembang seperti India dan Tiongkok. Data menunjukkan bahwa 95% pengaruh ini berasal dari Tiongkok saja. Pada tahun 2012, data dari Dewan Industri Kimia Eropa menunjukkan bahwa lima negara Eropa menyumbang 71 persen penjualan bahan kimia UE. Ini termasuk Jerman, Perancis, Inggris, Italia dan Belanda.

Industri kimia berkembang di Cina, India, Korea, Timur Tengah, Asia Tenggara, Nigeria dan Brazil. Pertumbuhan dipercepat oleh perubahan ketersediaan dan harga bahan mentah, biaya tenaga kerja dan energi, perbedaan pertumbuhan ekonomi dan tekanan lingkungan.

Meskipun perusahaan tampak sebagai produsen bahan kimia yang penting, di seluruh dunia kita juga dapat melihat peringkat negara-negara industri berdasarkan output miliaran dolar yang dapat diekspor oleh suatu negara atau wilayah. Meskipun industri kimia tersebar di seluruh dunia, sebagian besar dari produksi bahan kimia senilai $3,7 triliun di dunia hanya diproduksi oleh segelintir negara industri. Amerika Serikat sendiri menghasilkan $689 miliar pada tahun 2008, atau 18,6 persen dari produksi bahan kimia global.

Disadur dari: en.wikipedia.org

Selengkapnya
Mengenal Chemical industry

Teknik Elektro

Antarmuka Pengguna (UI): Mengupas Konsep dan Peran Masing-Masing

Dipublikasikan oleh Muhammad Ilham Maulana pada 17 April 2024


Antarmuka pengguna (dalam bahasa Inggris: user interface; disingkat UI) adalah suatu bentuk tampilan grafis yang berhubungan langsung dengan pengguna. Antarmuka pengguna berfungsi untuk menghubungkan pengguna dengan sistem operasi agar komputer dapat digunakan.

The Reactable, contoh antarmuka pengguna yang nyata

Dalam desain industri interaksi manusia-komputer, antarmuka pengguna (UI) adalah ruang tempat terjadinya interaksi antara manusia dan mesin. Tujuan dari komunikasi ini adalah untuk memungkinkan penggunaan dan pengendalian mesin secara efisien oleh manusia, sementara mesin mengembalikan informasi yang membantu pengguna dan #039; keputusan membuat proses. Contoh konsep antarmuka pengguna yang luas ini mencakup aspek interaktif sistem operasi komputer, perkakas tangan, kendali mesin berat, dan kendali proses. Pertimbangan desain yang diterapkan pada pembuatan antarmuka pengguna berkaitan dengan disiplin ilmu seperti ergonomi dan psikologi.

Secara umum, tujuan dari desain antarmuka pengguna adalah untuk menghasilkan antarmuka pengguna yang membuat penggunaan mesin menjadi mudah, efisien, dan menyenangkan (user-friendly) dengan cara yang menghasilkan hasil yang diinginkan (yaitu kegunaan maksimal). Ini biasanya berarti bahwa pengguna harus memberikan masukan sesedikit mungkin untuk mencapai keluaran yang diinginkan, dan juga mesin meminimalkan keluaran yang tidak diinginkan kepada pengguna.

Antarmuka pengguna terdiri dari satu atau lebih lapisan, termasuk antarmuka manusia-mesin (HMI), yang biasanya menghubungkan mesin ke perangkat keras masukan fisik (seperti keyboard, mouse, atau gamepad) dan perangkat keras keluaran (seperti monitor komputer, speaker, dan printer ). Perangkat yang mengimplementasikan antarmuka pengguna disebut antarmuka manusia (HID). Antarmuka yang menghilangkan pergerakan fisik bagian tubuh sebagai langkah perantara antara otak dan mesin tidak menggunakan perangkat input atau output selain elektroda; mereka disebut antarmuka otak-komputer (BCI) atau antarmuka otak-komputer (BMI).

Istilah lain untuk antarmuka manusia-mesin adalah antarmuka manusia-mesin (MMI) dan, untuk komputer, antarmuka manusia-komputer. Lapisan antarmuka pengguna tambahan dapat berinteraksi dengan satu atau lebih indera manusia, termasuk: antarmuka pengguna taktil (sentuhan), antarmuka pengguna visual (penglihatan), antarmuka pendengaran (suara), antarmuka penciuman (penciuman), antarmuka pengguna keseimbangan (keseimbangan), dan pengecapan. . antarmuka pengguna (rasa). .

Antarmuka pengguna komposit (CUI) adalah antarmuka pengguna yang berinteraksi dengan dua pikiran atau lebih. CUI yang paling umum adalah antarmuka pengguna grafis (GUI), yang terdiri dari antarmuka sentuh dan antarmuka visual yang mampu menampilkan grafik. Ketika audio ditambahkan ke antarmuka pengguna grafis, itu menjadi antarmuka pengguna multimedia (MUI). Ada tiga kategori besar CUI: standar, virtual, dan ditingkatkan. CUI standar menggunakan perangkat antarmuka manusia standar seperti keyboard, mouse, dan monitor komputer. Ketika CUI memblokir dunia nyata untuk menciptakan realitas virtual, CUI adalah virtual dan menggunakan antarmuka realitas virtual. Jika CUI tidak mencakup dunia nyata atau menciptakan augmented reality, CUI tersebut ditambah dan menggunakan antarmuka augmented reality.

Ketika antarmuka pengguna berinteraksi dengan semua indera seseorang, itu disebut antarmuka qualia, dinamai berdasarkan teori qualia. [rujukan?] CUI juga dapat diklasifikasikan berdasarkan berapa banyak indera yang berinteraksi dengannya, baik antarmuka realitas virtual sensorik X atau antarmuka pengguna realitas tertambah X., di mana X adalah jumlah indra yang terhubung. Misalnya, Smell-O-Vision adalah antarmuka standar 3-indera (3S) dengan tampilan visual, suara, dan penciuman. ketika realitas virtual menghubungkan antarmuka dengan penciuman dan sentuhan, itu dikatakan sebagai antarmuka realitas virtual 4-indera (4S); dan ketika antarmuka augmented reality mencakup penciuman dan sentuhan, itu dikatakan sebagai antarmuka augmented reality empat indera (4S).

Review

Antarmuka manusia-mesin biasanya melibatkan perangkat keras periferal untuk INPUT dan OUTPUT. Seringkali, ada komponen tambahan yang diimplementasikan dalam perangkat lunak, seperti misalnya. antarmuka pengguna grafis.

Antarmuka pengguna, atau antarmuka manusia-mesin, adalah bagian mesin yang berhubungan dengan komunikasi manusia-mesin. Sakelar membran, keyboard karet, dan layar sentuh adalah contoh bagian fisik antarmuka manusia-mesin yang dapat kita lihat dan sentuh.

Dalam sistem yang kompleks, antarmuka manusia-mesin biasanya berbasis komputer. Antarmuka manusia-komputer mengacu pada sistem seperti itu. Dalam konteks komputasi, istilah ini biasanya meluas ke perangkat lunak yang dirancang untuk mengontrol elemen fisik yang digunakan dalam interaksi manusia-komputer. Antarmuka manusia-mesin ditingkatkan dengan mempertimbangkan ergonomi (faktor manusia). Disiplin terkait adalah rekayasa faktor manusia (HFE) dan rekayasa kegunaan (UE), yang merupakan bagian dari rekayasa sistem.
 

Disadur dari: en.wikipedia.org 

Selengkapnya
Antarmuka Pengguna (UI): Mengupas Konsep dan Peran Masing-Masing

Perindustrian

Menelusuri Dunia Karet Lembaran Asap Bergaris

Dipublikasikan oleh Jovita Aurelia Sugihardja pada 17 April 2024


Ribbed Smoked Sheet (RSS) merupakan produk olahan yang diperoleh dari lateks/jus tanaman karet Hevea brasiliensis, yang diproses secara mekanis dan kimia di rumah asap, dengan mutu Green Book. standar dan konsisten. Prinsip pengolahan karet jenis ini adalah mengubah lateks taman menjadi lembaran dengan cara menyaring, mengencerkan, membekukan, menggiling dan mengasapi. Beberapa faktor penting yang mempengaruhi kualitas akhir   pemrosesan RSS meliputi pembekuan atau koagulasi lateks, fumigasi, dan pengeringan. Karet asap strip digunakan sebagai bahan baku pembuatan ban kendaraan bermotor, khususnya ban pelek.

Pengolahan Karet Taman

Langkah pertama pada mesin pemisah kertas adalah Pengolahan Karet Karet Taman diperoleh dari hasil olahan pohon karet. Lateks dikumpulkan dalam bola plastik di satu tempat dan disaring untuk memisahkan debu dan bagian lateks yang telah dikoagulasi. Setelah proses ekstraksi selesai, lateks dimasukkan ke dalam tangki koagulasi untuk proses pengenceran dengan air guna menyamakan kandungan karet kering (DKK).

Pengenceran

Tujuan pengenceran adalah untuk menyaring pengotor dan kandungan karet kering dengan mudah untuk mempertahankan cara pengolahan dan kualitas yang sama. Pengenceran dapat dilakukan dengan menambahkan air bersih tanpa komponen pelarut, pH air 5,8-8,0, kesadahan air. 6 dengan kandungan bikarbonat tidak melebihi 0,03%. Pengenceran dilakukan hingga KKK mencapai 12-15%. Lateks dari tangki penerima terlebih dahulu melewati filter menggunakan filter aluminium dan kemudian melewati saluran.

Pembekuan

Pembekuan lateks dilakukan dalam rendaman pemutih dengan penambahan larutan asam. Larutan asam asetat/asam dan cuka dengan konsentrasi 1-2% biasanya digunakan pada lateks dengan takaran 4 ml per kg karet kering. Jumlah ini dapat ditingkatkan jika antikoagulan ditambahkan ke dalam lateks. Penggunaan asam format karena kemampuannya dalam menurunkan pH lateks dan biayanya jauh lebih rendah bagi perkebunan karet dan petani dibandingkan dengan asam lainnya. Tujuan penambahan asam adalah untuk menurunkan pH lateks hingga mencapai titik netral, dimana lateks akan membeku atau mengeras antara pH 4,5-4,7. Ion H+ bereaksi dengan ion OH- dalam protein dan senyawa lain untuk menetralkan muatan, sehingga mengionisasi resin. Setelah menambahkan larutan asam, pengadukan membantu menembus lateks dan mempercepat proses pengawetan. Aduk perlahan sebanyak 6 hingga 10 kali untuk mencegah terbentuknya gelembung udara yang akan mempengaruhi kualitas kertas yang dihasilkan. Laju koagulasi dapat dikontrol dengan memvariasikan rasio lateks, air dan asam untuk memperoleh gumpalan, yang juga dikenal sebagai gumpalan putih kuat. [masukkan] Lateks mengeras setelah 40 menit. Langkah selanjutnya adalah memasukkan pelat penyegel yang berfungsi membuat bentuk kertas.

Thread

Pemutaran dilakukan setelah proses pembekuan selesai. Pasta atau mentega yang dihasilkan diperas untuk menghilangkan kelembapan, sebagian whey dihilangkan, dicuci dan dibuat menjadi lembaran tipis, dan garis batik diaplikasikan pada lembaran tersebut. Untuk memperoleh kertas, gumpalan tersebut dipindahkan menggunakan serangkaian mesin gulungan halus, gulungan belimbing, dan gulungan batik. Setelah berganti bunyi, cuci kembali kertas dengan air bersih untuk mencegah permukaan berminyak akibat penggunaan bahan kimia, bersihkan sisa debu, agar kertas tidak lengket saat dijalankan. Bekuan tanah disiram di tempat terbuka dan terlindung dari sinar matahari selama 1-2 jam. Tujuan dehidrasi adalah untuk mengurangi kadar air kertas sebelum diasapi. Jangan direndam terlalu lama untuk menghindari cacat kertas (misalnya warna karat akibat redoks). Penyiraman dilakukan di tempat yang terlindung dari sinar matahari.

Fear 
Fear adalah untuk mengeringkan kertas sehingga terlihat coklat dan mencegah tumbuhnya jamur di atasnya. Asap yang dihasilkan dapat mencegah tumbuhnya jamur pada permukaan lembaran karet. Sebab, asap mengandung bahan kimia yang menghambat pertumbuhan mikroorganisme. Suhu yang digunakan pada ruang cerutu adalah:

  • Pengasapan hari pertama dilakukan di rumah asap dengan suhu sekitar 40-45oC.
  • Hari kedua merokok, suhu asap dalam ruangan mencapai 50-55 oC.
  • Inkubasi pada suhu rumah asap mencapai 55-60oC dari hari ketiga hingga hari berikutnya.

Hari pertama membutuhkan lebih banyak asap untuk menciptakan warna. Segala jenis bahan bakar (biasanya resin) yang masih basah dapat digunakan untuk menambah asap. Pada hari kedua, kertas harus diputar untuk menghilangkan kertas yang menempel pada celah dan sisi kertas harus terkena asap untuk pengalaman merokok yang baik. Mulai hari ketiga, panas dibutuhkan untuk mencapai tingkat yang diperlukan untuk pematangan.

Proses klasifikasi dilakukan menurut kenampakan warna, debu, gelembung udara, kapang dan derajat penggilingan, sesuai aturan yang terdapat dalam SNI 06-0001-1987. Pada dasarnya halaman diklasifikasikan berdasarkan RSS 1, RSS 2, RSS 3, RSS 4, RSS 5 dan kualitas pemotongan. Menggorok mengacu pada pemotongan kertas yang memiliki gelembung udara atau permukaan di area kecil.

Peringkat Kualitas

RSS 1

Peringkat ini harus memenuhi persyaratan. Artinya kertas yang dihasilkan harus benar-benar kering, bersih, sehat, bebas dari cacat, karat, gelembung udara dan kotoran. RSS Tipe 1 tidak boleh terkena karat, kertas lunak, suhu pengeringan terlalu tinggi, tidak kering sempurna, asap tebal, warna terlalu tua atau terbakar, dll. Bahkan gelembung kecil (seukuran peniti) dapat diterima asalkan didistribusikan secara merata. Pengemasan harus ketat untuk mencegah kontaminasi jamur. Namun jika pada saat diterima di dalam kemasan terdapat cetakan, maka diterima asalkan tidak masuk ke dalam karet.

RSS 2

Kelas tidak memerlukan terlalu banyak kriteria. RSS 2 Harus kering, bersih, sehat, bebas noda, gelembung atau debu. Kertas tidak boleh ternoda atau berubah warna karena karat, lunak, suhu pengeringan terlalu tinggi, atau terlalu kering, berasap, warnanya terlalu tua, atau tidak dipanaskan. Kertas jenis ini selalu memiliki gelembung udara yang besar (dua kali ukuran peniti) dan bintik-bintik pada kulit. Pelapis dan bahan pemutih masih diperbolehkan pada pembungkus, kulit luar bandela atau lembaran dalam. Namun jika jumlahnya melebihi 5% dari jumlah yang ditagih, kursi akan dibatalkan.

RSS 3

Standar RSS 3 Harus kering, kokoh dan elastis, bebas dari noda, gelembung atau debu. Cacat warna berupa lepuh besar (tiga kali ukuran kuku jari tangan) atau bintik pada kulit pohon karet yang masih dalam perawatan. Namun jika ada bercak atau garis akibat karat, kertas lembek, suhu pengering terlalu tinggi, kurang kering, banyak asap, warna pudar atau gosong. , kami tidak setuju. Jamur yang terdapat pada kulit luar tanaman dan menempel pada daun tidak menjadi masalah jika jumlahnya tidak melebihi 10% dari tanaman tempat pengambilan sampel.

RSS 4

RSS 4 Standar Karet harus kering, sehat, tanpa cacat, tanpa gelembung, tanpa pasir dan debu asing. Idealnya jika terdapat gelembung udara kecil berukuran empat kali peniti, karetnya agak lengket, dan tidak banyak kotoran di kulit. Kegelapan diperbolehkan asalkan bersih. Seprai basah, pengeringan terlalu tinggi, dan karet panas tidak diperbolehkan. Resin yang dikeringkan atau dicetak pada lapisan luar dan lembaran bandella masih dapat digunakan untuk RSS kelas 4 jika tidak melebihi 20% dari total.

RSS 5

Karet yang digunakan harus halus dan bebas dari debu atau benda asing, kecuali diperbolehkan. Dibandingkan dengan kelas RSS lainnya, RSS 5 merupakan standar terendah. Noda, gelembung udara kecil, bintik kulit yang besar, karet yang sedikit lengket, asap berlebih dan area yang agak kering masih dalam batas yang dapat diterima. Resin kering atau bahan sintetis lapisan luar dan kertas bandela (asalkan tidak melebihi 30% dari total) masih dapat diterima untuk RSS kelas 5. Tidak boleh kering dan terbakar pada suhu tinggi. Kelas jenis ini. 

 

Faktor-faktor yang perlu diperhatikan saat mengolah kertas

Beberapa faktor yang perlu diperhatikan saat mengolah kertas

adalah sebagai berikut: 

  1. Di dalam ruang asap. Lateks berasal dari tumbuhan yang sudah lama tidak disentuh sehingga membentuk permen karet tipis yang mudah pecah atau sobek. Oleh karena itu, diperlukan penanganan tap yang baik agar Tap Garden Latex dapat memenuhi standar bahan pembuatan kertas. Untuk mencapai hasil produk yang sesuai dengan

  2. , kemurnian lateks harus dijaga dari pertanian hingga pabrik pengolahan. Alat pemotong, termasuk pisau pengikis, saluran kain, mangkuk, ember pengumpul, dan pelat pemotong itu sendiri, harus bebas dari debu dan sisa permukaan dari pemotongan sebelumnya.

  3. Jika Anda mendapat pajak dari pabrik, tambahkan antikoagulan seperti amonia. Untuk menghindari penggunaan asam format yang berlebihan pada saat proses antikoagulan, maka penambahan antikoagulan diusahakan tidak melebihi batas yang ditentukan. Selama pengangkutan, sebaiknya hindari sinar matahari langsung dan panas berlebihan untuk mencegah prakoagulasi dan melepuh.

  4. Menambahkan terlalu banyak atau terlalu banyak penawar racun, seperti asam, akan mengeraskan baja dan membuatnya lebih sulit dipatahkan, tetapi jika tidak cukup, akan membuatnya lunak, lembek, atau tetap terhidrasi (tidak sembelit). Diperlukan] Selama proses upgrade, tambahkan larutan asam secara perlahan dan merata lalu aduk perlahan hingga siap. Ketebalan permen karet kertas yang tidak tepat dapat disebabkan oleh campuran lateks/asam yang tidak tepat, terlalu sedikit asam, terlalu banyak lateks, atau penangas es. Gelembung pada kertas karet dapat disebabkan oleh terlalu banyak asam, terlalu cepat anil, asam terlalu kuat, filtrasi buruk, waktu terlalu lama, atau terlalu sedikit waktu terlalu kuat. Ketika lateks sudah tercampur sempurna, isi bekuan dengan air untuk mencegah oksidasi melalui udara, yang akan menyebabkan terbentuknya batu hitam pada permukaan bekuan.

  5. Penggilingan daun dilakukan untuk menghilangkan sebagian besar kelembapan dari daging buah. Semakin tinggi permukaan daun maka semakin cepat kering. Kecepatan penggulungan bervariasi dari satu gulungan ke gulungan lainnya, semakin tinggi kecepatannya maka semakin cepat gulungan belakangnya tetapi gulungan model akhir akan lebih cepat dan putarannya lebih sedikit. Kecepatan putaran dan jarak celah mempengaruhi hasil putaran. Lembaran yang mudah robek mungkin disebabkan oleh kecepatan pengumpanan yang tidak mencukupi atau jarak antara dua celah terlalu besar.

Pada saat pengasapan dan pengeringan, beberapa faktor harus diperhatikan untuk menghindari kesalahan dan memperoleh kualitas yang baik pada pembuatan kertas: Berikut beberapa kemungkinan sumber kesalahan:

  1. Lembaran karet bersifat lunak (lengket) dan elastis (melar) karena suhu rumah asap terlalu tinggi. Partikel tar pada permukaan lembaran berasal dari bahan bakar bekas dengan jumlah tar yang banyak, konsentrasi uap air yang mengandung tar, atap cerobong yang terbuat dari genteng, atau seng yang jatuh pada permukaan lembaran karet.

  2. Karena kecepatan pengeringan, penggunaan bahan kimia yang tidak tepat seperti natrium bisulfit, warna kertas dapat memudar, atau isian karet pada kertas mungkin terlalu padat pada pengasap.

  3. Jika dibiarkan di tempat lembab dalam waktu lama, mikroorganisme pada lembaran karet akan membentuk lapisan tipis berwarna coklat keabu-abuan (karat). Selain itu, karena sirkulasi udara yang buruk, jamur mudah tumbuh di rumah yang suhunya di bawah 40oC. Oleh karena itu, pada hari pertama penjemuran, suhu harus dinaikkan dan pengaturan udara harus dilakukan dengan baik.

  4. Gelembung udara dapat terjadi karena cacat pada ruang uap. Misalnya suhu yang rendah, kenaikan suhu yang cepat atau suhu yang sangat tinggi di atas 60oC akan membuat pengeringan menjadi sangat lambat. Selain itu, terpal karet dapat menjadi lengket jika dikeringkan pada suhu yang terlalu tinggi.

  5. Abu yang menempel pada lembaran karet dapat terbawa asap dan masuk ke cerobong asap akibat kebakaran yang berlebihan.

Saat ini permasalahan yang mempengaruhi kualitas kertas di ruang penyortiran adalah munculnya jamur atau lumut pada permukaan kertas. Diperlukan] Ruang pemisahan harus bersih dan kering. Gulungan sebaiknya disusun di atas papan kayu, tidak lebih dari empat lapis.

Sumber: id.wikipedia.org 

Selengkapnya
Menelusuri Dunia Karet Lembaran Asap Bergaris

Perindustrian

Memahami Mengenai Ban

Dipublikasikan oleh Jovita Aurelia Sugihardja pada 17 April 2024


Ban(bahasa Inggris Amerika Utara) atau tyre (bahasa Inggris Persemakmuran) adalah komponen berbentuk cincin yang mengelilingi pelek roda untuk memindahkan beban kendaraan dari as roda melalui roda ke tanah dan memberikan traksi pada permukaan yang dilalui roda. Sebagian besar ban, seperti ban untuk mobil dan sepeda, merupakan struktur yang dipompa secara pneumatik, memberikan bantalan fleksibel yang menyerap guncangan saat ban menggelinding di atas permukaan yang kasar. Ban menyediakan tapak, yang disebut tambalan kontak, yang dirancang untuk menyesuaikan dengan berat kendaraan dan bantalan pada permukaan yang digulungnya dengan mengerahkan tekanan yang akan menghindari perubahan bentuk pada permukaan.

Bahan-bahan ban pneumatik modern adalah karet sintetis, karet alam, kain, dan kawat, serta karbon hitam dan senyawa kimia lainnya. Ban ini terdiri dari tapak dan badan ban. 

Tapak ban menyediakan traksi sementara badan ban menyediakan penahanan untuk sejumlah udara bertekanan. Sebelum karet dikembangkan, ban adalah pita logam yang dipasang di sekitar roda kayu untuk menahan roda bersama di bawah beban dan untuk mencegah keausan. Ban karet awal berbentuk padat (bukan pneumatik). Ban pneumatik digunakan pada banyak kendaraan, termasuk mobil, sepeda, sepeda motor, bus, truk, alat berat, dan pesawat terbang. Ban logam digunakan pada lokomotif dan gerbong kereta api, dan ban karet padat (atau polimer lainnya) juga digunakan pada berbagai aplikasi non-otomotif, seperti kastor, gerobak, mesin pemotong rumput, dan gerobak dorong.

Ban yang tidak terawat dapat menyebabkan bahaya yang parah bagi kendaraan dan manusia, mulai dari ban kempes yang membuat kendaraan tidak dapat beroperasi hingga meledak, di mana ban meledak saat beroperasi dan dapat merusak kendaraan serta melukai orang. Pembuatan ban sering kali sangat diatur karena alasan ini. Karena meluasnya penggunaan ban untuk kendaraan bermotor, limbah ban merupakan bagian penting dari limbah global. Ada kebutuhan untuk mendaur ulang ban melalui daur ulang mekanis dan penggunaan kembali, seperti untuk karet remah dan agregat yang berasal dari ban, dan pirolisis untuk penggunaan kembali secara kimiawi, seperti untuk bahan bakar yang berasal dari ban. Jika tidak didaur ulang dengan benar atau dibakar, limbah ban akan melepaskan bahan kimia beracun ke lingkungan. Selain itu, penggunaan ban secara teratur menghasilkan partikel mikro-plastik yang mengandung bahan kimia ini yang masuk ke lingkungan dan mempengaruhi kesehatan manusia.

Etimologi dan ejaan

Kata ban adalah bentuk singkat dari pakaian, dari gagasan bahwa roda dengan ban adalah roda berpakaian.

Ejaan ban tidak muncul sampai tahun 1840-an ketika Inggris mulai mengecilkan roda mobil kereta api dengan besi lunak. Namun demikian, penerbit tradisional terus menggunakan ban. Surat kabar Times di London masih menggunakan ban hingga tahun 1905.  Ejaan ban mulai umum digunakan pada abad ke-19 untuk ban pneumatik di Inggris. Encyclopædia Britannica edisi 1911 menyatakan bahwa "Ejaan 'tyre' sekarang tidak diterima oleh otoritas bahasa Inggris terbaik, dan tidak diakui di Amerika Serikat", sementara Fowler's Modern English Usage tahun 1926 menjelaskan bahwa "tidak ada yang dapat dikatakan untuk 'tyre', yang secara etimologis salah, serta tidak perlu berbeda dari penggunaan bahasa Inggris yang lebih tua dan penggunaan bahasa Inggris di Amerika saat ini". Namun, selama abad ke-20, tyre ditetapkan sebagai ejaan standar Inggris.

Sejarah

Ban paling awal adalah pita kulit, kemudian besi (kemudian baja) yang diletakkan di atas roda kayu yang digunakan pada gerobak dan gerobak. Seorang pekerja terampil, yang dikenal sebagai wheelwright, akan membuat ban mengembang dengan memanaskannya di dalam tungku, menempatkannya di atas roda, dan memadamkan nya, sehingga menyebabkan logam menyusut kembali ke ukuran aslinya agar pas di atas roda.

Paten pertama untuk ban pneumatik standar muncul pada tahun 1847 dan diajukan oleh penemu asal Skotlandia, Robert William Thomson, namun ide ini tidak pernah diproduksi. Ban pneumatik praktis pertama dibuat pada tahun 1888 di May Street, Belfast, oleh John Boyd Dunlop kelahiran Skotlandia, pemilik salah satu praktik dokter hewan paling makmur di Irlandia. Ban ini dibuat sebagai upaya untuk mencegah sakit kepala putranya yang berusia 10 tahun, Johnnie, ketika mengendarai sepeda roda tiga di trotoar yang kasar. Dokternya, John, yang kemudian dikenal sebagai Sir John Fagan, telah meresepkan bersepeda sebagai latihan untuk anak laki-laki itu dan merupakan pengunjung tetap. Fagan berpartisipasi dalam mendesain ban pneumatik pertama. Pembalap sepeda Willie Hume menunjukkan keunggulan ban Dunlop pada tahun 1889, dengan memenangkan balapan pertama ban ini di Irlandia dan kemudian Inggris. Dalam spesifikasi paten ban Dunlop tertanggal 31 Oktober 1888, ketertarikannya hanya pada penggunaannya untuk sepeda dan kendaraan ringan. Pada bulan September 1890, ia diberitahu tentang perkembangan sebelumnya, namun perusahaan menyimpan informasi tersebut untuk dirinya sendiri.

Pada tahun 1892, paten Dunlop dinyatakan tidak valid karena penemuan sebelumnya oleh sesama orang Skotlandia yang terlupakan, Robert William Thomson dari London (paten London 1845, Prancis 1846, Amerika Serikat 1847). Namun, Dunlop dikreditkan dengan "menyadari bahwa karet dapat menahan keausan sebagai ban dengan tetap mempertahankan ketahanannya." John Boyd Dunlop dan Harvey du Cros mengatasi kesulitan yang cukup besar. Mereka mempekerjakan penemu Charles Kingston Welch dan memperoleh hak-hak dan paten lainnya, yang memungkinkan mereka untuk mendapatkan perlindungan terbatas atas posisi bisnis Pneumatic Tyre mereka. Ban Pneumatik kemudian menjadi Dunlop Rubber dan Ban Dunlop. Pengembangan teknologi ini bergantung pada berbagai kemajuan teknik, termasuk vulkanisasi karet alam menggunakan belerang, serta pengembangan pelek "penjepit" untuk menahan ban pada tempatnya secara lateral pada pelek roda.

Karet sintetis ditemukan di laboratorium Bayer pada tahun 1920-an. Kelangkaan karet di Inggris selama Perang Dunia II mendorong penelitian tentang alternatif untuk ban karet dengan saran termasuk kulit, asbes terkompresi, rayon, kain kempa, bulu, dan kertas.

Pada tahun 1946, Michelin mengembangkan metode konstruksi ban radial. Michelin telah membeli perusahaan mobil Citroën yang bangkrut pada tahun 1934 untuk memanfaatkan teknologi baru ini. Karena keunggulannya dalam pengendalian dan penghematan bahan bakar, penggunaan teknologi ini dengan cepat menyebar ke seluruh Eropa dan Asia. Di AS, konstruksi ban bias-lapis yang sudah ketinggalan zaman bertahan hingga Ford Motor Company mengadopsi ban radial pada awal tahun 1970-an, setelah sebuah artikel tahun 1968 di sebuah majalah Amerika yang berpengaruh, Consumer Reports, menyoroti keunggulan konstruksi radial. Industri ban AS kehilangan pangsa pasarnya kepada produsen Jepang dan Eropa, yang membeli perusahaan-perusahaan AS.

Aplikasi

Ban dapat diklasifikasikan menurut jenis kendaraan yang dilayaninya. Ban dapat dibedakan berdasarkan beban yang dibawanya dan aplikasinya, misalnya pada kendaraan bermotor, pesawat terbang, atau sepeda.

Otomotif

Tugas ringan-sedang

Ban tugas ringan untuk kendaraan penumpang membawa beban pada kisaran 550 hingga 1.100 pon (250 hingga 500 kg) pada roda penggerak. Truk dan van tugas ringan hingga sedang membawa beban pada kisaran 1.100 hingga 3.300 pon (500 hingga 1.500 kg) pada roda penggerak. Ban dibedakan berdasarkan peringkat kecepatan untuk kendaraan yang berbeda, termasuk (mulai dari kecepatan terendah hingga tertinggi): ban musim dingin, ban truk ringan, ban mobil tingkat pemula, sedan dan van, sedan sport, dan mobil berperforma tinggi. Selain ban untuk jalan raya, ada kategori khusus:

  • Ban salju dirancang untuk digunakan di atas salju dan es. Ban ini memiliki desain tapak dengan celah yang lebih besar daripada ban musim panas, sehingga meningkatkan traksi di atas salju dan es. Ban semacam itu yang telah lulus uji kinerja traksi musim dingin tertentu berhak untuk menampilkan simbol "Serpihan Salju Gunung Tiga Puncak" pada dinding sampingnya. Ban yang dirancang untuk kondisi musim dingin dioptimalkan untuk berkendara pada suhu di bawah 7 ° C (45 ° F). Beberapa ban salju memiliki kancing logam atau keramik yang menonjol dari ban untuk meningkatkan traksi pada salju atau es yang padat. Kancing mengikis trotoar kering, menyebabkan debu dan menimbulkan keausan pada jalur roda. Peraturan yang mewajibkan penggunaan ban salju atau mengizinkan penggunaan kancing berbeda-beda di setiap negara di Asia dan Eropa, serta di setiap negara bagian atau provinsi di Amerika Utara.

  • Ban semua musim biasanya diberi peringkat untuk lumpur dan salju (M+S). Ban ini memiliki celah tapak yang lebih kecil dari ban salju dan lebih besar dari ban konvensional. Ban ini lebih senyap dibandingkan ban salju di jalan yang bersih, tetapi kurang mampu melaju di atas salju atau es.

  • Ban segala medan dirancang untuk memiliki traksi yang memadai di luar jalan raya, namun memiliki karakteristik pengendalian dan kebisingan yang tidak berbahaya untuk berkendara di jalan raya. Ban semacam itu dinilai lebih baik di salju dan hujan daripada ban jalan raya, dan "baik" di es, batu, dan pasir.

  • Ban untuk medan lumpur memiliki tapak yang lebih dalam dan lebih terbuka untuk cengkeraman yang baik di lumpur, dibandingkan ban untuk segala medan, tetapi kinerjanya kurang baik di jalan raya.

  • Ban berperforma tinggi dinilai untuk kecepatan hingga 168 mil per jam (270 km/jam) dan ban berperforma sangat tinggi dinilai untuk kecepatan hingga 186 mil per jam (299 km/jam), tetapi memiliki karakteristik pengendaraan dan daya tahan yang lebih keras.

  • Kendaraan listrik memiliki tuntutan yang unik pada ban karena kombinasi berat (menghasilkan indeks beban baru), torsi yang lebih tinggi, dan persyaratan untuk hambatan gulir yang lebih rendah.

Jenis lain dari ban otomotif tugas ringan termasuk ban kembang dan ban mobil balap:

  • Ban run-flat tidak memerlukan ban cadangan karena ban ini dapat digunakan dengan kecepatan yang lebih rendah jika terjadi kebocoran, menggunakan dinding samping yang kaku untuk mencegah kerusakan pada pelek ban. Kendaraan tanpa ban run-flat mengandalkan ban cadangan, yang mungkin berupa ban kompak, untuk menggantikan ban yang rusak.

  • Ban mobil balap memiliki tiga kategori utama, yaitu DOT (street-legal), slick, dan hujan. Ban mobil balap dirancang untuk memaksimalkan gesekan saat menikung dan akselerasi dengan mengorbankan usia pakai. Ban balap slick tidak memiliki tapak untuk memaksimalkan kontak dengan trotoar dan ban hujan memiliki saluran untuk mengeluarkan air untuk menghindari hydroplaning.

Tugas berat

Ban tugas berat untuk truk dan bus besar tersedia dalam berbagai profil dan membawa beban pada kisaran 4.000 hingga 5.500 pon (1.800 hingga 2.500 kg) pada roda penggerak. Ban ini biasanya dipasang bersama-sama pada poros penggerak.

  • Ban truk tersedia dalam berbagai profil yang mencakup "profil rendah" dengan tinggi bagian 70 hingga 45% dari lebar tapak, "dasar lebar" untuk kendaraan berat, dan ban "super-tunggal" yang memiliki tekanan kontak total yang sama dengan kombinasi ban yang dipasang ganda.

  • Ban off-road digunakan pada kendaraan konstruksi, peralatan pertanian dan kehutanan, dan aplikasi lain yang digunakan di medan yang lunak. Kategori ini juga mencakup mesin yang berjalan di atas permukaan yang diperkeras di lokasi industri, pelabuhan, dan bandara. Ban yang dirancang untuk medan lunak memiliki tapak yang dalam dan lebar untuk memberikan traksi pada tanah, lumpur, pasir, atau kerikil yang gembur.

Lainnya

Pesawat terbang, sepeda, dan berbagai aplikasi industri memiliki persyaratan desain yang berbeda.

  • Ban pesawat dirancang untuk mendarat di permukaan beraspal dan mengandalkan roda pendaratan untuk menyerap guncangan saat mendarat. Untuk menghemat berat dan ruang yang dibutuhkan, ban pesawat terbang biasanya berukuran kecil sesuai dengan kendaraan yang ditopang.Sebagian besar memiliki konstruksi radial-ply. Ban ini dirancang untuk beban puncak saat pesawat tidak bergerak, meskipun beban samping saat mendarat merupakan faktor penting. Meskipun hidroplaning menjadi perhatian untuk ban pesawat terbang, ban ini biasanya memiliki alur radial dan tidak memiliki alur lateral atau sipes. Beberapa pesawat terbang ringan menggunakan ban tundra berdiameter besar dan bertekanan rendah untuk mendarat di permukaan yang belum dipersiapkan di daerah hutan belantara.

  • Ban sepeda dapat dirancang untuk berkendara di jalan raya atau di medan yang belum diperbaiki dan dapat dipasang pada kendaraan dengan lebih dari dua roda. Ada tiga jenis utama: clincher, kabel dan tubular. Sebagian besar ban sepeda berbentuk clincher dan memiliki manik-manik yang menekan pelek roda. Ban dalam menyediakan tekanan udara dan tekanan kontak antara bead dan pelek roda.

  • Ban industri mendukung kendaraan seperti forklift, traktor, ekskavator, penggilas jalan, dan pemuat ember. Ban yang digunakan pada permukaan yang halus memiliki tapak yang halus, sedangkan ban yang digunakan pada permukaan yang lunak biasanya memiliki fitur tapak yang besar. Beberapa ban industri berbentuk padat atau diisi dengan busa.

  • Ban sepeda motor memberikan traksi, menahan keausan, menyerap ketidakteraturan permukaan, dan memungkinkan sepeda motor berbelok melalui countersteering. Kontak kedua ban dengan tanah mempengaruhi keselamatan, pengereman, penghematan bahan bakar, kebisingan, dan kenyamanan pengendara.

Disadur dari: en.wikipedia.org

Selengkapnya
Memahami Mengenai Ban

Teknik Elektro

Stochastic Process: Mengupas Proses Acak dalam Matematika

Dipublikasikan oleh Muhammad Ilham Maulana pada 17 April 2024


Dalam teori probabilitas dan bidang terkait, proses stokastik (/stəˈkæstɪk/) atau acak adalah objek matematika, biasanya didefinisikan sebagai rangkaian variabel acak dalam ruang probabilitas, di mana indeks rangkaian tersebut sering kali memiliki interpretasi temporal. Proses stokastik banyak digunakan sebagai model matematika dari sistem dan fenomena yang muncul bervariasi secara acak. Contohnya adalah pertumbuhan populasi bakteri, fluktuasi arus listrik akibat kebisingan termal, atau pergerakan molekul gas. Proses stokastik dapat diterapkan di banyak bidang keilmuan seperti biologi, kimia, ekologi, ilmu saraf, fisika, pemrosesan gambar, pemrosesan sinyal, teori kendali. teori informasi, ilmu komputer dan telekomunikasi. Selain itu, perubahan pasar keuangan yang tampaknya acak telah mendorong meluasnya penggunaan proses stokastik di bidang keuangan.

Realisasi proses gerak Wiener atau Brown yang disimulasikan komputer pada permukaan bola. Proses Wiener secara luas dianggap sebagai proses stokastik yang paling banyak dipelajari dan sentral dalam teori probabilitas.

Penerapan dan studi fenomena pada gilirannya menginspirasi proses stokastik baru. Contoh proses stokastik tersebut adalah proses Wiener atau proses gerak Brown [a] yang digunakan oleh Louis Bachelier untuk mempelajari perubahan harga di Bursa Efek Paris, dan proses Poisson yang digunakan oleh A.K. Erlang memeriksa jumlah panggilan yang dilakukan selama periode waktu tertentu. Kedua proses stokastik ini dianggap paling penting dan sentral dalam teori proses stokastik dan ditemukan berulang kali dan independen sebelum dan sesudah Bachelier dan Erlang di lingkungan dan negara yang berbeda.

Istilah fungsi acak juga digunakan untuk menunjukkan suatu proses stokastik atau acak, karena proses stokastik juga dapat diartikan sebagai elemen acak dari suatu ruang fungsi. Istilah proses stokastik dan proses acak digunakan secara bergantian, seringkali tanpa status matematika tertentu untuk sekumpulan variabel acak indeks.Namun, kedua istilah ini sering digunakan ketika variabel acak diindeks dengan bilangan bulat atau interval nyata. Jika variabel acak diindeks dalam bidang Kartesius atau ruang Euclidean yang lebih tinggi, maka himpunan variabel acak biasanya disebut bidang acak. Nilai dari suatu proses stokastik tidak selalu berupa angka, namun dapat berupa vektor atau objek matematika lainnya.

Berdasarkan sifat matematikanya, proses stokastik dapat dikelompokkan menjadi beberapa kategori, antara lain random walk, martingales, proses Markov, proses Lévy, proses Gaussian, random field, proses inovasi dan proses percabangan. Studi tentang proses stokastik menggunakan pengetahuan matematika dan teknik kalkulus probabilitas, aljabar linier, teori himpunan dan topologi dan cabang analisis matematika seperti analisis nyata, teori ukuran, analisis Fourier dan analisis fungsional. Teori proses stokastik dianggap sebagai kontribusi penting bagi matematika dan terus menjadi topik penelitian aktif baik untuk alasan teoritis maupun aplikasi.

Perkenalan

Proses stokastik atau acak dapat didefinisikan sebagai sekumpulan variabel acak yang diindeks oleh beberapa himpunan matematika, artinya setiap variabel acak dari proses stokastik terkait secara unik dengan salah satu elemen himpunan tersebut. Himpunan yang digunakan untuk menyatakan variabel acak disebut himpunan indeks. Secara historis, kumpulan indeks adalah bagian dari barisan sebenarnya, seperti bilangan asli, yang memberikan interpretasi temporal pada kumpulan indeks. Setiap variabel acak dalam himpunan mengambil nilai dari ruang matematika yang sama yang disebut ruang keadaan. Ruang keadaan ini dapat berupa, misalnya, bilangan bulat, garis real, atau ruang berdimensi Euclidean {\displaystyle n}. Pertumbuhan adalah besarnya perubahan dalam proses stokastik antara dua nilai indeks, yang sering diartikan sebagai dua titik waktu. Proses stokastik dapat memiliki banyak hasil karena keacakannya, dan salah satu hasil dari proses stokastik disebut, antara lain, fungsi sampel atau eksekusi.

Suatu contoh fungsi atau realisasi tunggal yang disimulasikan komputer, antara lain, dari proses gerak Wiener atau Brown tiga dimensi untuk waktu 0 ≤ t ≤ 2. Himpunan indeks dari proses stokastik ini adalah bilangan non-negatif, sedangkan ruang keadaannya adalah ruang Euclidean tiga dimensi.

Proses stokastik dapat dikategorikan berdasarkan berbagai faktor, seperti ruang keadaan, kumpulan indeks, atau hubungan antara variabel acak. Salah satu metode klasifikasi yang umum digunakan adalah dengan mempertimbangkan kardinalitas himpunan indeks dan ruang keadaan.

Jika dilihat sebagai waktu, sebuah proses stokastik dianggap berada dalam waktu diskrit jika himpunan indeksnya terdiri dari sejumlah elemen yang terbatas atau dapat dihitung, seperti himpunan bilangan atau bilangan asli. Sebaliknya, jika kumpulan indeks mewakili interval pada garis nyata, waktu dianggap kontinu. Kedua jenis ini masing-masing dikenal sebagai proses stokastik waktu diskrit dan waktu kontinu. Proses waktu diskrit sering kali lebih disukai untuk dipelajari karena sifatnya yang lebih sederhana, sementara proses waktu kontinu memerlukan teknik matematika yang lebih canggih.

Selanjutnya, proses stokastik diklasifikasikan berdasarkan ruang keadaannya. Jika ruang keadaan terdiri dari bilangan bulat atau bilangan asli, proses tersebut disebut sebagai proses diskrit atau bernilai bilangan bulat. Sebaliknya, jika ruang keadaan adalah garis real, proses disebut bernilai real atau memiliki ruang keadaan kontinu. Selain itu, jika ruang keadaan adalah ruang Euclidean n-dimensi, prosesnya disebut sebagai proses vektor n-dimensi.

Istilah "stokastik" pada awalnya berkaitan dengan dugaan, berasal dari kata Yunani yang berarti "membidik sasaran, menebak." Penggunaan modernnya, yang menunjukkan keacakan atau peluang, berasal dari abad ke-16. Konsep proses stokastik diperkenalkan pada abad ke-18, dengan istilah "proses stokastik" pertama kali muncul dalam bahasa Inggris pada abad ke-20.

Dalam hal notasi, proses stokastik direpresentasikan dengan simbol seperti {X(t)}, {Xt}, atau hanya X, di mana t menunjukkan himpunan indeks. Namun, penting untuk dicatat bahwa X(t) secara khusus mengacu pada variabel acak pada waktu t, bukan keseluruhan proses.

Contoh

  • Proses Bernoulli

Proses Bernoulli merupakan salah satu proses stokastik yang paling sederhana, ditandai dengan urutan variabel acak yang independen dan terdistribusi secara identik (iid). Setiap variabel mengambil nilai satu atau nol, dengan probabilitas masing-masing p dan 1-p. Proses ini sering diibaratkan seperti melempar koin berulang kali, di mana probabilitas kepala koin adalah p dan ekor koin adalah 1-p. Pada dasarnya, proses Bernoulli terdiri dari variabel acak Bernoulli iid, di mana setiap lemparan koin mewakili percobaan Bernoulli. 

  • Random Walk

Random walk mewakili proses stokastik yang biasanya didefinisikan sebagai jumlah dari variabel atau vektor acak ke-i dalam ruang Euclidean. Proses ini berevolusi dalam waktu diskrit,[84][85][86][87][88] meskipun beberapa definisi meluas ke waktu kontinu, terutama dalam model keuangan yang menggunakan proses Wiener, yang mengarah ke beberapa kebingungan dan kritik.[90] Random walk muncul dalam berbagai bentuk, yang memungkinkan ruang negara mereka menjangkau objek matematika yang berbeda seperti kisi-kisi dan kelompok. Mereka dipelajari secara ekstensif dan menemukan aplikasi di berbagai disiplin ilmu. 

  • Proses Wiener

Proses Wiener, juga dikenal sebagai gerakan Brown, adalah proses stokastik yang ditandai dengan kenaikan ukuran yang stasioner dan independen terdistribusi secara normal. Dinamai dari Norbert Wiener, proses ini digunakan di berbagai bidang, awalnya memodelkan pergerakan Brownian dalam cairan.

  • Proses Poisson

Proses Poisson, dengan beragam bentuk dan definisinya, merepresentasikan proses penghitungan dalam istilah stokastik. Proses ini menghitung jumlah titik atau peristiwa acak dalam interval waktu tertentu. Jumlah titik-titik ini dalam waktu tertentu mengikuti distribusi Poisson, yang ditentukan oleh parameter dan interval waktu. Dengan state space yang terdiri dari bilangan asli dan kumpulan indeks yang terdiri dari bilangan non-negatif, proses Poisson juga dikenal sebagai proses penghitungan Poisson, yang menggambarkan kegunaannya sebagai mekanisme penghitungan. 

Sejarah

  • Teori Probabilitas Awal

Teori probabilitas dapat ditelusuri kembali ke permainan peluang kuno, yang mendapatkan perhatian formal pada abad ke-17 melalui korespondensi Pierre Fermat dan Blaise Pascal tentang perjudian. Sebelumnya, karya Gerolamo Cardano tentang permainan peluang menjadi dasar, yang berpuncak pada "Ars Conjectandi" Jakob Bernoulli pada tahun 1713, yang menginspirasi eksplorasi lebih lanjut meskipun pada awalnya ada keengganan dari komunitas matematika.

  • Mekanika Statistik

Pada abad ke-19, mekanika statistik muncul, memperlakukan sistem fisik sebagai kumpulan partikel yang bergerak. Karya James Clerk Maxwell pada tahun 1859 merevolusi bidang ini dengan memperkenalkan keacakan ke dalam teori kinetik gas, yang kemudian menjadi dasar yang berpengaruh pada model gerak Brownian Albert Einstein.

  • Teori Pengukuran dan Teori Probabilitas

Proposal David Hilbert pada tahun 1900 untuk perlakuan matematis terhadap fisika dan probabilitas mendorong perkembangan teori pengukuran. Matematikawan Prancis Henri Lebesgue dan Emile Borel memelopori cabang ini, dengan buku probabilitas Paul Lévy tahun 1925 yang menandai langkah penting. Sementara itu, di Uni Soviet, ahli matematika seperti Sergei Bernstein dan Aleksandr Khinchin mulai meletakkan dasar teori probabilitas, yang berpuncak pada karya penting Kolmogorov pada tahun 1933 yang menggunakan teori ukuran untuk membangun kerangka kerja aksiomatik.

  • Kelahiran Teori Probabilitas Modern

Publikasi Kolmogorov menandai lahirnya teori probabilitas modern, yang memformalkan proses stokastik dalam matematika. Kontribusi selanjutnya dari Joseph Doob, William Feller, dan lainnya mengukuhkan posisinya dalam wacana matematika, meskipun ada gangguan dari Perang Dunia II.

  • Proses Stokastik setelah Perang Dunia II

Pasca Perang Dunia II, minat terhadap teori probabilitas melonjak. Karya Kiyosi Ito dalam kalkulus stokastik dan kontribusi Gilbert Hunt pada proses Markov mendorong bidang ini ke depan. Buku Joseph Doob yang berpengaruh pada tahun 1953 menekankan pentingnya teori pengukuran dalam probabilitas, yang membentuk lintasan penelitian selanjutnya.

  • Penemuan Proses Stokastik Spesifik

Proses stokastik spesifik seperti proses Bernoulli dan random walk memiliki sejarah panjang, dimulai dari penelitian Jakob Bernoulli pada abad ke-18. Eksplorasi Albert Einstein tentang gerak Brown pada tahun 1905 dan karya perintis Louis Bachelier dalam matematika keuangan meletakkan dasar yang penting. Proses Siméon Poisson muncul dalam berbagai konteks, terutama dalam model asuransi Filip Lundberg pada tahun 1903 dan model panggilan telepon A.K. Erlang pada tahun 1909. Kontribusi Andrey Markov pada awal abad ke-20 meletakkan dasar untuk proses Markov, dengan perkembangan selanjutnya oleh Maurice Fréchet dan lainnya yang membentuk evolusi bidang ini. Proses Lévy, yang dinamai sesuai nama Paul Lévy, mendapat kontribusi dasar dari Bruno de Finetti dan Kiyosi Itô pada tahun 1930-an.
 

Disadur dari: en.wikipedia.org 

Selengkapnya
Stochastic Process: Mengupas Proses Acak dalam Matematika

Farmasi

Industri Kimia Indonesia Memimpin: Gaji Pegawai Teratas Dibanding Sektor Lain

Dipublikasikan oleh Jovita Aurelia Sugihardja pada 17 April 2024


JAKARTA, KOMPAS.com - Gaji pokok pada industri kimia di Indonesia 25 persen lebih tinggi dibandingkan industri lain pada umumnya. Demikian disampaikan perusahaan konsultan global bidang SDM dan organisasi, Korn Ferry, dalam laporan yang berjudul Reward in Asia Pacific Chemical Sector 2019. Chairman & Managing Director, Korn Ferry Indonesia, Satya Radjasa mengatakan, tingginya gaji di industri kimia Indonesia tersebut karena masih kurangnya tenaga ahli di bidang itu.

“Industri kimia di Indonesia yang sedang berkembang menghadapi tantangan terkait permintaan tenaga kerja dengan keahlian yang tepat. Kebutuhannya tidak hanya sebatas profesional saja, melainkan para profesional dengan keahlian industri yang tepat," kata dia dalam siaran persnya Rabu (21/08/2019).

Dia menyebutkan, studi terbaru Korn Ferry mengenai sumber daya manusia dalam industri kimia di wilayah Asia Pasifik menunjukkan bahwa lebih dari setengah perusahaan kimia di Asia Pasifik saat ini mengalami kekurangan insinyur dan tenaga ahli bidang quality assurance. Sementara itu lebih dari 40 persen perusahaan kesulitan merekrut tenaga ahli bidang Research & Development (R&D) dan bidang produksi. 

"Khusus untuk Indonesia, hal ini menyebabkan proyeksi gaji pokok pada industri kimia di Indonesia meningkat sebesar 8,3 persen pada tahun 2019 dibandingkan dengan industri pada umumnya. Angka ini juga merupakan yang tertinggi kedua di kawasan Asia Pasifik setelah India yang diproyeksikan sebesar 9,8 persen,” ucap dia. 

Menurut Cefic Chemdata International 2018, penjualan bahan kimia Indonesia pada 2017 mencapai 43 miliar euro (Rp 693 triliun). Jumlah ini kurang dari 2 persen dari penjualan bahan kimia global yang mencapai  3.475 miliar euro. Kementerian Perindustrian Indonesia sendiri telah mengidentifikasi sektor kimia sebagai salah satu dari lima sektor prioritas dalam road map "Making Indonesia 4.0". 

Industri kimia di Indonesia merupakan tulang punggung perekonomian Indonesia dan mendukung kegiatan manufaktur utama dalam industri makanan & minuman, otomotif, tekstil, farmasi, dan elektronik. Industri kimia juga merupakan penyedia solusi yang penting untuk berbagai tantangan global seperti perubahan iklim, pertumbuhan populasi dan degradasi lingkungan.

Sumber: money.kompas.com
 

 

Selengkapnya
Industri Kimia Indonesia Memimpin: Gaji Pegawai Teratas Dibanding Sektor Lain
« First Previous page 584 of 773 Next Last »