Teknik Elektro dan Informatika

Mengenal Komputer: Etimologi hingga Jenisnya

Dipublikasikan oleh Nadia Pratiwi pada 30 Mei 2024


Komputer (bahasa Inggris: computer) adalah mesin yang dapat melakukan operasi matematika atau operasi logika dengan cepat dan otomatis. Pada masa sekarang, komputer dipahami sebagai perangkat elektronik digital yang melakukan tugas di bawah serangakaian instruksi yang disebut program.

Etimologi

"Komputer" adalah terjemahan bahasa Indonesia dari computer. Kata benda computer berasal dari kata kerja compute, berasal dari bahasa Prancis computer, dan berasal dari bahasa Latin computare yang berarti "'menghitung". Menurut Oxford English Dictionary, kata computer pertama kali digunakan pada 1613 oleh penyair Inggris Richard Brathwait dalam bukunya The Yong Mans Gleanings: "I haue read the truest computer of Times, and the best Arithmetician that euer breathed, and he reduceth thy dayes into a short number." Komputer yang dimaksud di sini adalah komputer manusia.

Jenis

Sekalipun demikian, definisi di atas mencakup banyak alat khusus yang hanya bisa memperhitungkan satu atau beberapa fungsi. Ketika mempertimbangkan komputer modern, sifat yang paling membedakan mereka dari alat penghitung yang terdahulu ialah dengan pemrograman yang benar, semua komputer dapat mengemulasi sifat apa pun (meskipun barangkali dibatasi oleh kapasitas penyimpanan dan kecepatan yang berbeda), dan, memang dipercaya bahwa mesin sekarang bisa meniru alat perkomputeran yang akan diciptakan manusia pada masa depan (meskipun niscaya lebih lambat). Dalam suatu pengertian, batas kemampuan ini adalah tes yang berguna karena mengenali komputer "maksud umum" dari alat maksud istimewa yang lebih awal. Definisi dari "maksud umum" bisa diformulasikan ke dalam syarat bahwa suatu mesin harus dapat meniru Mesin Turing universal. Mesin yang mendapat definisi ini dikenal sebagai Turing-lengkap, dan yang pertama kali muncul pada tahun 1940 di tengah kesibukan perkembangan di seluruh dunia. Lihat artikel sejarah perkomputeran untuk lebih banyak detail periode ini.

1. Komputer benam

Sekitar 20 tahun yang lalu, banyak alat rumah tangga, khususnya panel dari permainan video juga mencakup telepon genggam, perekam kaset video, PDA dan banyak sekali dalam rumah tangga, industri, otomotif, dan alat elektronik lain, semua berisi sirkuit elektronik seperti komputer yang memenuhi syarat Turing-lengkap di atas (dengan catatan bahwa program dari alat ini sering kali dibuat secara langsung di dalam chip ROM yang akan perlu diganti untuk mengubah program mesin). Maksud khusus komputer yang lain secara umum dikenal sebagai "mikrokontroler" atau "komputer benam". Oleh karena itu, banyak yang membatasi definisi komputer kepada alat yang maksud pokoknya adalah pengolahan informasi, daripada menjadi bagian dari sistem yang lebih besar seperti telepon, oven mikrowave, atau pesawat terbang, dan dapat diubah untuk berbagai maksud oleh pengguna tanpa modifikasi fisik. Komputer bingkai utama, minikomputer, dan komputer pribadi (PC) adalah macam utama komputer yang mendapat definisi ini.

2. Komputer pribadi

Komputer pribadi adalah istilah untuk komputer yang banyak diketahui orang pada umumnya sehingga banyak orang yang tak akrab dengan bentuk komputer selain komputer pribadi. Hanya orang-orang tertentu saja yang memakai istilah ini secara eksklusif untuk menunjukkan istilah yang lebih spesifik dan tepat.

Cara kerja komputer

Saat teknologi yang dipakai pada komputer digital sudah berganti secara dramatis sejak komputer pertama pada tahun 1940-an (lihat Sejarah perangkat keras menghitung untuk lebih banyak detail), komputer kebanyakan masih menggunakan arsitektur Von Neumann, yang diusulkan pada awal 1940-an oleh John von Neumann.

Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmetika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, "bus"

  • Memori

Di sistem ini, memori adalah urutan bita yang dinomori (seperti "sel" atau "lubang burung dara"), masing-masing berisi sepotong kecil informasi. Informasi ini bisa menjadi perintah untuk mengatakan pada komputer apa yang harus dilakukan. Sel bisa berisi data yang diperlukan komputer untuk melakukan suatu perintah. Setiap slot dapat berisi salah satu, dan apa yang sekarang menjadi data mungkin saja kemudian menjadi perintah.

Memori menyimpan berbagai bentuk informasi sebagai angka biner. Informasi yang belum berbentuk biner akan dipecahkan (encoded) dengan sejumlah instruksi yang mengubahnya menjadi sebuah angka atau urutan angka-angka. Sebagai contoh: Huruf F disimpan sebagai angka desimal 70 (atau angka biner) menggunakan salah satu metode pemecahan. Instruksi yang lebih kompleks bisa digunakan untuk menyimpan gambar, suara, video, dan berbagai macam informasi. Informasi yang bisa disimpan dalam satu sell dinamakan sebuah byte.

Secara umum, memori bisa ditulis kembali lebih jutaan kali - memori dapat diumpamakan sebagai papan tulis dan kapur yang dapat ditulis dan dihapus kembali, daripada buku tulis dengan pena yang tidak dapat dihapus.

Ukuran masing-masing sel, dan jumlah sel, berubah secara hebat dari komputer ke komputer, dan teknologi dalam pembuatan memori sudah berubah secara hebat - dari relai elektromekanik, ke tabung yang diisi dengan air raksa (dan kemudian pegas) di mana pulsa akustik terbentuk, sampai matriks magnet permanen, ke setiap transistor, ke sirkuit terpadu dengan jutaan transistor di atas satu chip silikon.

  • Pemrosesan

Unit Pemroses Sentral berperan untuk mengolah perintah yang diberikan oleh pengguna komputer, mengelolanya bersama data-data yang ada di komputer. Unit atau peranti pemrosesan juga akan berkomunikasi dengan peranti input, output dan penyimpanan untuk melaksanakan instruksi yang saling terkait.

Dalam arsitektur von Neumann yang asli, ia menjelaskan sebuah Unit Aritmetika dan Logika, dan sebuah Unit Kontrol. Dalam komputer-komputer modern, kedua unit ini terletak dalam satu sirkuit terpadu, yang biasanya disebut Unit Pemroses Sentral.

Unit aritmatika dan logika, adalah alat yang melakukan pelaksanaan dasar seperti pelaksanaan aritmetika (tambahan, pengurangan, dan semacamnya), pelaksanaan logis (AND, OR, NOT), dan pelaksanaan perbandingan (misalnya, membandingkan isi sebanyak dua slot untuk kesetaraan). Pada unit inilah dilakukan "kerja" yang sebenarnya.

Unit kontrol menyimpan perintah saat ini yang dilakukan oleh komputer, memerintahkan ALU untuk melaksanaan dan mendapatkan kembali informasi (dari memori) yang diperlukan untuk melaksanakan perintah itu, dan memindahkan kembali hasil ke lokasi memori yang sesuai. Unit ini berfungsi mengontrol pembacaan instruksi program komputer.

  • Masukan dan hasil

I/O membolehkan komputer mendapatkan informasi dari dunia luar, dan menaruh hasil kerjanya di sana, dapat berbentuk fisik (hardcopy) atau non fisik (softcopy). Ada berbagai macam alat I/O, dari yang akrab kibor, monitor dan cakram penyimpanan, ke yang lebih tidak biasa seperti kamera web, pencetak, pemindai, dan sebagainya.

Yang dimiliki oleh semua alat masukan biasa ialah bahwa mereka mengenkode (mengubah) informasi dari suatu macam ke dalam data yang bisa diolah lebih lanjut oleh sistem komputer digital. Alat keluaran, mendekode data ke dalam informasi yang bisa dimengerti oleh pemakai komputer. Dalam pengertian ini, sistem komputer digital adalah contoh sistem pengolah data.

  • Instruksi

Perintah yang dibicarakan di atas bukan perintah seperti bahasa manusiawi. Komputer hanya mempunyai perintah sederhana dalam jumlah terbatas yang dirumuskan dengan baik. Perintah biasa yang dipahami kebanyakan komputer ialah "menyalin isi sel 123, dan tempat tiruan di sel 456", "menambahkan isi sel 666 ke sel 042, dan tempat akibat di sel 013", dan "jika isi sel 999 adalah 0, perintah berikutnya anda di sel 345".

Instruksi diwakili dalam komputer sebagai nomor - kode untuk "menyalin" mungkin menjadi 001, misalnya. Suatu himpunan perintah khusus yang didukung oleh komputer tertentu diketahui sebagai bahasa mesin komputer. Dalam praktiknya, orang biasanya tidak menulis perintah untuk komputer secara langsung di bahasa mesin tetapi memakai bahasa pemrograman "tingkat tinggi" yang kemudian diterjemahkan ke dalam bahasa mesin secara otomatis oleh program komputer khusus (interpreter dan kompiler). Beberapa bahasa pemrograman berhubungan erat dengan bahasa mesin, seperti assembler (bahasa tingkat rendah); di sisi lain, bahasa seperti Prolog didasarkan pada prinsip abstrak yang jauh dari detail pelaksanaan sebenarnya oleh mesin (bahasa tingkat tinggi)

  • Arsitektur

Komputer kontemporer menaruh ALU dan unit kontrol ke dalam satu sirkuit terpadu yang dikenal sebagai Unit Pemroses Sentral atau CPU. Biasanya, memori komputer ditempatkan di atas beberapa sirkuit terpadu yang kecil dekat UPS. Alat yang menempati sebagian besar ruangan dalam komputer adalah ancilliary sistem (misalnya, untuk menyediakan tenaga listrik) atau alat I/O.

Beberapa komputer yang lebih besar berbeda dari model di atas di satu hal utama - mereka mempunyai beberapa UPS dan unit kontrol yang bekerja secara bersamaan. Terlebih lagi, beberapa komputer, yang dipakai sebagian besar untuk maksud penelitian dan perkomputeran ilmiah, sudah berbeda secara signifikan dari model di atas, tetapi mereka sudah menemukan sedikit penggunaan komersial.

Fungsi dari komputer secara prinsip sebenarnya cukup sederhana. Komputer mencapai perintah dan data dari memorinya. Perintah dilakukan, hasil disimpan, dan perintah berikutnya dicapai. Prosedur ini berulang sampai komputer dimatikan.

  • Program

Program komputer adalah daftar besar perintah untuk dilakukan oleh komputer, barangkali dengan data di dalam tabel. Banyak program komputer berisi jutaan perintah, dan banyak dari perintah itu dilakukan berulang kali. Sebuah komputer pribadi modern yang umum (pada tahun 2003) bisa melakukan sekitar 2-3 miliar perintah dalam sedetik. Komputer tidak mendapat kemampuan luar biasa mereka lewat kemampuan untuk melakukan perintah kompleks. Tetapi, mereka melakukan jutaan perintah sederhana yang diatur oleh orang pandai, pemrogram."Programmer Baik memperkembangkan set-set perintah untuk melakukan tugas biasa (misalnya, menggambar titik di layar) dan lalu membuat set-set perintah itu tersedia kepada programmer lain". Sekarang ini, kebanyakan komputer dapat melakukan beberapa program sekaligus. Ini biasanya diserahkan ke sebagai multitasking. Pada kenyataannya, UPS melakukan perintah dari satu program, kemudian setelah beberapa saat, UPS beralih ke program kedua dan melakukan beberapa perintahnya. Jarak waktu yang kecil ini sering diserahkan ke sebagai irisan waktu (time-slice). Ini menimbulkan khayal program lipat ganda yang dilakukan secara bersamaan dengan memberikan waktu UPS di antara program. Ini mirip bagaimana film adalah rangkaian kilat saja masih membingkaikan. Sistem operasi adalah program yang biasanya menguasai kali ini membagikan

Sistem operasi

Sistem operasi adalah semacam gabungan dari potongan kode yang berguna. Ketika semacam kode komputer dapat dipakai secara bersama oleh beraneka-ragam program komputer, setelah bertahun-tahun, pemrogram (programmer) akhirnya memindahkannya ke dalam sistem operasi.

Sistem operasi, menentukan program mana yang akan dijalankan, kapan, dan alat yang mana (seperti memori atau I/O) yang mereka gunakan. Sistem operasi juga memberikan layanan (service) kepada program lain, seperti kode yang membolehkan pemrogram untuk menulis program untuk suatu mesin tanpa perlu mengetahui detail dari semua alat elektronik yang terhubung pada komputer.

Penggunaan komputer

Komputer digital pertama, memiliki ukuran yang besar dan membutuhkan biaya besar untuk pembuatannya. Komputer pada masa itu umumnya digunakan untuk mengerjakan perhitungan ilmiah. ENIAC, komputer awal AS awalnya dibuat untuk memperhitungkan tabel ilmu balistik untuk persenjataan (artileri), menghitung kerapatan penampang neutron untuk melihat jika bom hidrogen akan bekerja dengan semestinya (perhitungan ini, yang dilakukan pada Desember 1945 sampai Januari 1946 dan melibatkan dala dalam lebih dari satu juta Punch card, memperlihatkan bentuk lalu di bawah pertimbangan akan gagal). CSIR Mk 1/CSIRAC, komputer pertama Australia, mengevaluasi pola curah hujan untuk tempat penampungan dari Snowy Mountains, suatu proyek pembangkit Hidroelektrik besar. Selain itu juga dipakai dalam kriptanalisis, misalnya komputer elektronik digital yang pertama, Colossus, dibuat selama Perang Dunia II. Akan tetapi, visionaris awal juga menyangka bahwa pemrograman itu akan dapat memainkan catur, memindahkan gambar dan penggunaan lain.

Orang-orang di pemerintah dan perusahaan besar juga memakai komputer untuk mengotomasikan banyak data dan mengerjakan tugas yang sebelumnya dikerjakan oleh manusia misalnya, memelihara dan memperbarui rekening dan inventaris. Dalam bidang pendidikan, ilmuwan di berbagai bidang mulai memakai komputer untuk analisis mereka sendiri. Penurunan harga komputer membuat komputer dapat dipakai oleh organisasi yang lebih kecil. Bisnis, organisasi, dan pemerintah sering menggunakan banyak komputer kecil untuk menyelesaikan tugas yang sebelumnya dilakukan oleh komputer kerangka utama yang mahal dan besar. Kumpulan komputer yang lebih kecil di satu lokasi disebut sebagai server.

Dengan penemuan mikroprosesor di 1970-an, menghasilkan komputer yang sangat murah menjadi mungkin. PC menjadi populer untuk banyak tugas, termasuk menyimpan buku, menulis, dan mencetak dokumen. Perhitungan meramalkan dan lain berulang matematika dengan lembatang sebar, berhubungan dengan e-pos dan, Internet. Namun, ketersediaan luas komputer dan mudah dikostumisasi komputer dapat digunakan untuk banyak pekerjaan lain.

Sekaligus, komputer kecil, biasanya dengan mengatur program, ditemukan cara mengaplikasikan mereka ke dalam alat lain seperti peralatan rumah, mobil, pesawat terbang, dan perlengkapan industri. Prosesor benam menguasai kelakuan alat seperti itu yang lebih mudah, membolehkan kelakuan kontrol yang lebih kompleks (untuk kejadian, perkembangan sistem rem anti terkunci di mobil). Saat abad ke-21 dimulai, kebanyakan alat listrik, bentuk angkutan bertenaga, dan batas produksi pabrik dikuasai di sisi komputer. Kebanyakan insinyur memprediksikan bahwa ini akan terus berkembang.

Bagian-bagian komputer

Komputer terdiri atas 2 bagian besar yaitu perangkat lunak (software) dan perangkat keras (hardware).

1. Perangkat keras

  • Pemroses atau CPU sebagai unit pengolah data
  • Memori RAM, tempat penyimpanan data sementara
  • Cakram keras, media penyimpanan data semi permanen
  • Perangkat masukan, media yang digunakan untuk memasukkan data untuk diproses oleh CPU, seperti tetikus, kibor, dan tablet
  • Perangkat keluaran, media yang digunakan untuk menampilkan hasil keluaran pemrosesan CPU, seperti monitor, pengeras suara, perangkat jemala, plotter, proyektor, dan pencetak

2. Perangkat lunak

Sistem operasi

Program dasar pada komputer yang menghubungkan pengguna dengan hardware komputer. Sistem operasi yang biasa digunakan adalah Linux, Windows, dan Mac OS. Tugas sistem operasi termasuk (Namun tidak hanya) mengatur eksekusi program di atasnya, koordinasi input, output, pemrosesan, memori, serta instalasi software.

Program komputer

  • Slot pada komputer
  • ISA/PCI, slot untuk masukan kartu tambahan non-grafis
  • AGP/PCIe, slot untuk masukan kartu tambahan grafis
  • IDE/SCSI/SATA, slot untuk hard drive/ODD
  • USB, slot untuk masukan media plug-and-play (colok dan mainkan, artinya perangkat yang dapat dihubungkan ke komputer dan langsung dapat digunakan)

Jenis komputer

  1. Komputer analog
  2. Komputer pulsa
  3. Mikrokomputer
  • Komputer rumah (home computer)
  • Komputer pribadi (PC)
  • Komputer server

4. Minikomputer

5. Komputer bingkai utama

6. Superkomputer

Disadur dari: https://en.wikipedia.org/

Selengkapnya
Mengenal Komputer: Etimologi hingga Jenisnya

Teknik Industri

Manajemen Permintaan Energi

Dipublikasikan oleh Muhammad Ilham Maulana pada 30 Mei 2024


Manajemen permintaan energi, juga dikenal sebagai manajemen sisi permintaan (DSM) atau respons sisi permintaan (DSR), adalah modifikasi permintaan konsumen akan energi melalui berbagai metode seperti insentif keuangan dan perubahan perilaku melalui pendidikan.

Biasanya, tujuan dari manajemen sisi permintaan adalah untuk mendorong konsumen menggunakan lebih sedikit energi selama jam sibuk, atau untuk memindahkan waktu penggunaan energi ke waktu tidak sibuk seperti malam hari dan akhir pekan. Manajemen permintaan puncak tidak serta merta menurunkan konsumsi energi total, tetapi diharapkan dapat mengurangi kebutuhan investasi jaringan dan/atau pembangkit listrik untuk memenuhi permintaan puncak. Contohnya adalah penggunaan unit penyimpanan energi untuk menyimpan energi selama jam tidak sibuk dan mengeluarkannya selama jam sibuk.

Aplikasi yang lebih baru untuk DSM adalah untuk membantu operator jaringan dalam menyeimbangkan pembangkitan intermiten dari unit angin dan matahari, terutama ketika waktu dan besarnya permintaan energi tidak sesuai dengan pembangkit yang terbarukan. Generator yang disambungkan selama periode permintaan puncak seringkali merupakan unit bahan bakar fosil. Meminimalkan penggunaannya mengurangi emisi karbon dioksida dan polutan lainnya.

Industri tenaga listrik Amerika awalnya sangat bergantung pada impor energi asing, baik berupa listrik yang dapat dikonsumsi maupun bahan bakar fosil yang kemudian digunakan untuk menghasilkan listrik. Selama masa krisis energi pada tahun 1970-an, pemerintah federal mengesahkan Undang-Undang Kebijakan Pengaturan Utilitas Publik (PURPA), dengan harapan dapat mengurangi ketergantungan pada minyak asing dan mempromosikan efisiensi energi dan sumber energi alternatif. Tindakan ini memaksa utilitas untuk mendapatkan daya semurah mungkin dari produsen listrik independen, yang pada gilirannya mempromosikan energi terbarukan dan mendorong utilitas untuk mengurangi jumlah daya yang mereka butuhkan, sehingga mendorong agenda ke depan untuk efisiensi energi dan manajemen permintaan.

Istilah DSM diciptakan setelah masa krisis energi 1973 dan krisis energi 1979. Pemerintah di banyak negara mengamanatkan kinerja berbagai program untuk manajemen permintaan. Contoh awal adalah Undang-Undang Kebijakan Konservasi Energi Nasional tahun 1978 di AS, didahului oleh tindakan serupa di California dan Wisconsin. Manajemen sisi permintaan diperkenalkan secara publik oleh Electric Power Research Institute (EPRI) pada 1980-an. Saat ini, teknologi DSM menjadi semakin layak karena integrasi teknologi informasi dan komunikasi dan sistem tenaga, istilah baru seperti manajemen sisi permintaan terintegrasi (IDSM), atau smart grid.

Operasi

Penggunaan listrik dapat bervariasi secara dramatis pada jangka waktu pendek dan menengah, tergantung pada pola cuaca saat ini. Umumnya sistem kelistrikan grosir menyesuaikan dengan perubahan permintaan dengan mengirimkan pembangkit tambahan atau lebih sedikit. Namun, selama periode puncak, pembangkit tambahan biasanya disuplai oleh sumber yang kurang efisien ("puncak"). Sayangnya, biaya keuangan dan lingkungan seketika dari penggunaan sumber "puncak" ini tidak selalu tercermin dalam sistem harga eceran. Selain itu, kemampuan atau kemauan konsumen listrik untuk menyesuaikan diri dengan sinyal harga dengan mengubah permintaan (elastisitas permintaan) mungkin rendah, terutama dalam jangka waktu yang pendek. Di banyak pasar, konsumen (khususnya pelanggan ritel) sama sekali tidak menghadapi penetapan harga waktu nyata, tetapi membayar tarif berdasarkan biaya tahunan rata-rata atau harga yang dibuat lainnya.

Kegiatan manajemen permintaan energi berusaha untuk membawa permintaan dan pasokan listrik lebih dekat ke optimal yang dirasakan, dan membantu memberikan manfaat kepada pengguna akhir listrik untuk mengurangi permintaan mereka. Dalam sistem modern, pendekatan terpadu untuk manajemen sisi permintaan menjadi semakin umum. IDSM secara otomatis mengirimkan sinyal ke sistem pengguna akhir untuk melepaskan beban tergantung pada kondisi sistem. Hal ini memungkinkan penyetelan permintaan yang sangat tepat untuk memastikan bahwa permintaan tersebut sesuai dengan pasokan setiap saat, mengurangi pengeluaran modal untuk utilitas. Kondisi sistem kritis dapat menjadi waktu puncak, atau di daerah dengan tingkat energi terbarukan yang bervariasi, pada saat permintaan harus disesuaikan ke atas untuk menghindari pembangkitan berlebih atau ke bawah untuk membantu kebutuhan yang meningkat.

Secara umum, penyesuaian permintaan dapat terjadi dalam berbagai cara: melalui respons terhadap sinyal harga, seperti tarif diferensial permanen untuk waktu sore dan siang hari atau hari penggunaan dengan harga tinggi, perubahan perilaku yang dicapai melalui jaringan area rumah, kontrol otomatis seperti dengan kendali jarak jauh. AC, atau dengan penyesuaian beban permanen dengan peralatan hemat energi.

Fondasi logis

Permintaan komoditas apapun dapat dimodifikasi oleh tindakan pelaku pasar dan pemerintah (regulasi dan perpajakan). Manajemen permintaan energi menyiratkan tindakan yang mempengaruhi permintaan energi. DSM awalnya diadopsi dalam listrik, tetapi hari ini diterapkan secara luas untuk utilitas termasuk air dan gas juga.

Mengurangi permintaan energi bertentangan dengan apa yang telah dilakukan oleh pemasok energi dan pemerintah selama sebagian besar sejarah industri modern. Sedangkan harga riil berbagai bentuk energi telah menurun selama sebagian besar era industri, karena skala ekonomi dan teknologi, harapan untuk masa depan adalah sebaliknya. Sebelumnya, tidak masuk akal untuk mempromosikan penggunaan energi karena sumber energi yang lebih banyak dan lebih murah dapat diantisipasi di masa depan atau pemasok telah memasang kelebihan kapasitas yang akan dibuat lebih menguntungkan dengan peningkatan konsumsi.

Dalam ekonomi yang direncanakan secara terpusat, mensubsidi energi adalah salah satu alat pembangunan ekonomi utama. Subsidi untuk industri pasokan energi masih umum di beberapa negara.

Berlawanan dengan situasi historis, harga dan ketersediaan energi diperkirakan akan memburuk. Pemerintah dan aktor publik lainnya, jika bukan pemasok energi itu sendiri, cenderung menggunakan langkah-langkah permintaan energi yang akan meningkatkan efisiensi konsumsi energi.

Jenis

  • Efisiensi energi: Menggunakan lebih sedikit daya untuk melakukan tugas yang sama. Ini melibatkan pengurangan permintaan secara permanen dengan menggunakan peralatan intensif beban yang lebih efisien seperti pemanas air, lemari es, atau mesin cuci.
  • Respon permintaan: Metode reaktif atau pencegahan apa pun untuk mengurangi, meratakan, atau mengalihkan permintaan. Secara historis, program respons permintaan telah berfokus pada pengurangan puncak untuk menunda tingginya biaya pembangunan kapasitas pembangkitan. Namun, program respons permintaan sekarang sedang dicari untuk membantu mengubah bentuk beban bersih juga, beban dikurangi pembangkit tenaga surya dan angin, untuk membantu integrasi energi terbarukan variabel. Respon permintaan mencakup semua modifikasi yang disengaja terhadap pola konsumsi listrik pelanggan pengguna akhir yang dimaksudkan untuk mengubah waktu, tingkat permintaan sesaat, atau total konsumsi listrik. Respon permintaan mengacu pada berbagai tindakan yang dapat diambil di sisi pelanggan meteran listrik dalam menanggapi kondisi tertentu dalam sistem kelistrikan (seperti kemacetan jaringan periode puncak atau harga tinggi), termasuk IDSM yang disebutkan di atas.
  • Permintaan dinamis: Majukan atau tunda siklus pengoperasian alat beberapa detik untuk meningkatkan faktor keragaman rangkaian beban. Konsepnya adalah bahwa dengan memantau faktor daya jaringan listrik, serta parameter kontrolnya sendiri, masing-masing, beban terputus-putus akan menyala atau mati pada momen optimal untuk menyeimbangkan beban sistem secara keseluruhan dengan pembangkitan, mengurangi ketidaksesuaian daya kritis. Karena peralihan ini hanya akan memajukan atau menunda siklus pengoperasian alat selama beberapa detik, itu tidak akan terlihat oleh pengguna akhir. Di Amerika Serikat, pada tahun 1982, paten (sekarang sudah tidak berlaku) untuk ide ini dikeluarkan untuk insinyur sistem tenaga Fred Schweppe. Jenis kontrol permintaan dinamis ini sering digunakan untuk AC. Salah satu contohnya adalah melalui program SmartAC di California.
  • Sumber Daya Energi Terdistribusi: Pembangkitan terdistribusi, juga energi terdistribusi, pembangkitan di tempat (OSG) atau energi kabupaten/terdesentralisasi adalah pembangkitan dan penyimpanan listrik yang dilakukan oleh berbagai perangkat kecil yang terhubung ke jaringan yang disebut sebagai sumber daya energi terdistribusi (DER). Pembangkit listrik konvensional, seperti pembangkit listrik tenaga batu bara, gas dan nuklir, serta bendungan hidroelektrik dan pembangkit listrik tenaga surya skala besar, terpusat dan seringkali membutuhkan energi listrik untuk ditransmisikan dalam jarak jauh. Sebaliknya, sistem DER adalah teknologi terdesentralisasi, modular dan lebih fleksibel, yang terletak dekat dengan beban yang mereka layani, meskipun memiliki kapasitas hanya 10 megawatt (MW) atau kurang. Sistem ini dapat terdiri dari beberapa generasi dan komponen penyimpanan; dalam hal ini mereka disebut sebagai sistem tenaga hibrida. Sistem DER biasanya menggunakan sumber energi terbarukan, termasuk hidro kecil, biomassa, biogas, tenaga surya, tenaga angin, dan tenaga panas bumi, dan semakin memainkan peran penting untuk sistem distribusi tenaga listrik. Perangkat yang terhubung ke jaringan untuk penyimpanan listrik juga dapat diklasifikasikan sebagai sistem DER, dan sering disebut sistem penyimpanan energi terdistribusi (DESS). Melalui antarmuka, sistem DER dapat dikelola dan dikoordinasikan dalam smart grid. Pembangkitan dan penyimpanan terdistribusi memungkinkan pengumpulan energi dari berbagai sumber dan dapat menurunkan dampak lingkungan dan meningkatkan keamanan pasokan.

Skala

Secara garis besar, manajemen sisi permintaan dapat diklasifikasikan ke dalam empat kategori: skala nasional, skala utilitas, skala komunitas, dan skala rumah tangga individu.

Skala nasional

Peningkatan efisiensi energi adalah salah satu strategi manajemen sisi permintaan yang paling penting.[16] Peningkatan efisiensi dapat dilaksanakan secara nasional melalui undang-undang dan standar di perumahan, gedung, peralatan, transportasi, mesin, dll.

Skala utilitas

Selama permintaan puncak waktu, utilitas dapat mengontrol pemanas air penyimpanan, pompa kolam, dan AC di area yang luas untuk mengurangi permintaan puncak, mis. Australia dan Swiss. Salah satu teknologi umum adalah kontrol riak: sinyal frekuensi tinggi (misalnya 1000 Hz) ditumpangkan ke listrik normal (50 atau 60 Hz) untuk menghidupkan atau mematikan perangkat. Di negara-negara yang lebih berbasis layanan, seperti Australia, permintaan puncak jaringan listrik sering terjadi pada sore hari hingga sore hari (4 sore hingga 8 malam). Permintaan residensial dan komersial adalah bagian terpenting dari jenis permintaan puncak ini. Oleh karena itu, masuk akal bagi utilitas (distributor jaringan listrik) untuk mengelola pemanas air penyimpanan perumahan, pompa kolam, dan pendingin udara.

Skala komunitas

Nama lain bisa berupa kelurahan, kecamatan, atau distrik. Sistem pemanas sentral komunitas telah ada selama beberapa dekade di daerah musim dingin. Demikian pula, permintaan puncak di daerah puncak musim panas perlu dikelola, mis. Texas & Florida di AS, Queensland dan New South Wales di Australia. Manajemen sisi permintaan dapat diterapkan dalam skala komunitas untuk mengurangi permintaan puncak untuk pemanasan atau pendinginan. Aspek lainnya adalah untuk mencapai pembangunan atau komunitas bersih tanpa energi.

Mengelola energi, permintaan puncak, dan tagihan di tingkat masyarakat mungkin lebih layak dan layak, karena daya beli kolektif, daya tawar, lebih banyak pilihan dalam efisiensi atau penyimpanan energi, lebih banyak fleksibilitas dan keragaman dalam menghasilkan dan mengonsumsi energi di berbagai kali, mis. menggunakan PV untuk mengimbangi konsumsi siang hari atau untuk penyimpanan energi.

Skala rumah tangga

Di wilayah Australia, lebih dari 30% (2016) rumah tangga memiliki sistem fotovoltaik atap. Hal ini berguna bagi mereka untuk menggunakan energi bebas dari matahari untuk mengurangi impor energi dari grid. Selanjutnya, manajemen sisi permintaan dapat membantu ketika pendekatan sistematis dipertimbangkan: pengoperasian fotovoltaik, AC, sistem penyimpanan energi baterai, pemanas air penyimpanan, kinerja gedung dan langkah-langkah efisiensi energi.

Contoh

Queensland, Australia

Perusahaan utilitas di negara bagian Queensland, Australia memiliki perangkat yang dipasang pada peralatan rumah tangga tertentu seperti AC atau meteran rumah tangga untuk mengontrol pemanas air, pompa kolam, dll. Perangkat ini akan memungkinkan perusahaan energi untuk bersepeda jarak jauh menggunakan barang-barang ini selama jam sibuk jam. Rencana mereka juga mencakup peningkatan efisiensi barang-barang yang menggunakan energi dan memberikan insentif keuangan kepada konsumen yang menggunakan listrik selama jam-jam di luar jam sibuk, ketika biaya produksi perusahaan energi lebih murah.

Contoh lain adalah bahwa dengan manajemen sisi permintaan, rumah tangga Queensland Tenggara dapat menggunakan listrik dari sistem fotovoltaik atap untuk memanaskan air.

Toronto Kanada

Pada tahun 2008, Toronto Hydro, distributor energi monopoli Ontario, memiliki lebih dari 40.000 orang yang mendaftar untuk memasang perangkat jarak jauh ke AC yang digunakan perusahaan energi untuk mengimbangi lonjakan permintaan. Juru bicara Tanya Bruckmueller mengatakan bahwa program ini dapat mengurangi permintaan hingga 40 megawatt selama situasi darurat.

California, AS

California memiliki beberapa program manajemen sisi permintaan, termasuk program respons permintaan harga puncak otomatis dan kritis untuk pelanggan komersial dan industri serta konsumen perumahan, potongan harga efisiensi energi, penetapan harga waktu penggunaan berbasis non-acara, tarif pengisian kendaraan listrik khusus, dan penyimpanan terdistribusi. Beberapa dari program ini dijadwalkan untuk ditambahkan ke pasar grosir listrik untuk ditawar sebagai sumber daya "sisi pasokan" yang dapat dikirim oleh operator sistem. Manajemen sisi permintaan di negara bagian akan semakin penting karena tingkat pembangkitan terbarukan mendekati 33% pada tahun 2020, dan diperkirakan akan meningkat melampaui tingkat itu dalam jangka panjang.

Indiana, AS

Operasi Warrick Alcoa berpartisipasi dalam MISO sebagai sumber daya respons permintaan yang memenuhi syarat, yang berarti menyediakan respons permintaan dalam hal energi, cadangan pemintalan, dan layanan regulasi.

Brazil

Manajemen sisi permintaan dapat diterapkan pada sistem kelistrikan berdasarkan pembangkit listrik termal atau sistem di mana energi terbarukan, seperti pembangkit listrik tenaga air, lebih dominan tetapi dengan pembangkit termal komplementer, misalnya, di Brasil.

Dalam kasus Brasil, meskipun pembangkit listrik tenaga air sesuai dengan lebih dari 80% dari total, untuk mencapai keseimbangan praktis dalam sistem pembangkitan, energi yang dihasilkan oleh pembangkit listrik tenaga air memasok konsumsi di bawah permintaan puncak. Pembangkitan puncak disuplai oleh penggunaan pembangkit listrik berbahan bakar fosil. Pada tahun 2008, konsumen Brasil membayar lebih dari U$1 miliar untuk pembangkit termoelektrik komplementer yang sebelumnya tidak diprogram.

Di Brasil, konsumen membayar semua investasi untuk menyediakan energi, bahkan jika pabrik tidak beroperasi. Untuk sebagian besar pembangkit termal berbahan bakar fosil, konsumen membayar "bahan bakar" dan biaya operasi lainnya hanya jika pembangkit ini menghasilkan energi. Energi, per unit yang dihasilkan, lebih mahal dari pembangkit termal daripada dari pembangkit listrik tenaga air. Hanya beberapa pembangkit termoelektrik di Brasil yang menggunakan gas alam, sehingga menimbulkan polusi yang jauh lebih besar daripada pembangkit listrik tenaga air. Tenaga yang dihasilkan untuk memenuhi permintaan puncak memiliki biaya yang lebih tinggi — baik investasi maupun biaya operasi — dan polusi memiliki biaya lingkungan yang signifikan dan berpotensi, kewajiban finansial dan sosial untuk penggunaannya. Dengan demikian, perluasan dan pengoperasian sistem saat ini tidak seefisien yang dapat dilakukan dengan menggunakan manajemen sisi permintaan. Akibat dari inefisiensi ini adalah kenaikan tarif energi yang dibebankan kepada konsumen.

Selain itu, karena energi listrik dihasilkan dan dikonsumsi hampir seketika, semua fasilitas, seperti jalur transmisi dan jaringan distribusi, dibangun untuk konsumsi puncak. Selama periode non-puncak kapasitas penuh mereka tidak digunakan. Pengurangan konsumsi puncak dapat menguntungkan efisiensi sistem kelistrikan, seperti sistem Brasil, dalam berbagai cara: seperti menunda investasi baru dalam jaringan distribusi dan transmisi, dan mengurangi kebutuhan operasi daya termal komplementer selama periode puncak, yang dapat mengurangi keduanya. pembayaran untuk investasi pembangkit listrik baru untuk memasok hanya selama periode puncak dan dampak lingkungan yang terkait dengan emisi gas rumah kaca.

Masalah

Beberapa orang berpendapat bahwa manajemen sisi permintaan tidak efektif karena sering mengakibatkan biaya utilitas yang lebih tinggi bagi konsumen dan lebih sedikit keuntungan untuk utilitas. Salah satu tujuan utama dari manajemen sisi permintaan adalah untuk dapat membebankan konsumen berdasarkan harga sebenarnya dari utilitas pada saat itu. Jika konsumen dapat dikenakan biaya lebih sedikit untuk menggunakan listrik selama jam tidak sibuk, dan lebih banyak selama jam sibuk, maka penawaran dan permintaan secara teoritis akan mendorong konsumen untuk menggunakan lebih sedikit listrik selama jam sibuk, sehingga mencapai tujuan utama dari manajemen sisi permintaan.

 

Disadur dari: en.wikipedia.org

Selengkapnya
Manajemen Permintaan Energi

Teknik Industri

Sistem Manajemen Pemeliharaan Terkomputerisasi

Dipublikasikan oleh Muhammad Ilham Maulana pada 30 Mei 2024


Sebuah sistem manajemen pemeliharaan terkomputerisasi atau computerized maintenance management system (CMMS), juga dikenal sebagai sistem informasi manajemen pemeliharaan terkomputerisasi atau computerized maintenance management information system (CMMIS), adalah setiap paket perangkat lunak yang memelihara database komputer informasi tentang operasi pemeliharaan organisasi. Informasi ini dimaksudkan untuk membantu pekerja pemeliharaan melakukan pekerjaan mereka secara lebih efektif (misalnya, menentukan mesin mana yang memerlukan perawatan dan gudang mana yang berisi suku cadang yang mereka butuhkan) dan untuk membantu manajemen membuat keputusan yang tepat (misalnya, menghitung biaya perbaikan kerusakan mesin versus pemeliharaan preventif untuk setiap mesin, mungkin mengarah pada alokasi sumber daya yang lebih baik).

Data CMMS juga dapat digunakan untuk memverifikasi kepatuhan terhadap peraturan. Untuk mengontrol pemeliharaan fasilitas dengan benar, informasi diperlukan untuk menganalisis apa yang terjadi. Secara manual, ini membutuhkan banyak usaha dan waktu. CMMS juga memungkinkan pencatatan, untuk melacak tugas yang diselesaikan dan ditugaskan secara tepat waktu dan hemat biaya. Langkah-langkah berbeda dalam mengimplementasikan rencana CMMS telah dijelaskan dalam diagram.
 

Disadur dari: en.wikipedia.org

Selengkapnya
Sistem Manajemen Pemeliharaan Terkomputerisasi

Teknik Industri

Teknik Jasa Bangunan

Dipublikasikan oleh Muhammad Ilham Maulana pada 30 Mei 2024


Teknik jasa bangunan adalah disiplin teknik profesional yang berusaha untuk mencapai lingkungan dalam ruangan yang aman dan nyaman sambil meminimalkan dampak lingkungan dari sebuah bangunan.Istilah teknik jasa bangunan juga dikenal sebagai teknik sipil, mekanikal, elektro, teknik sipil, teknik arsitektur, teknik jasa bangunan, teknik bangunan atau teknik perencanaan fasilitas dan jasa. Istilah teknik jasa bangunan banyak digunakan di negara-negara Persemakmuran (termasuk Inggris Raya, Irlandia, Kanada, dan Australia), tetapi di Amerika Serikat, bidang ini juga dikenal sebagai teknik sistem bangunan, teknik sipil, atau teknik arsitektur. dua disiplin ilmu terakhir umumnya memiliki cakupan yang lebih luas, juga mencakup unsur-unsur teknik Struktur Sipil dan tugas-tugas Teknik arsitektur yang lebih tradisional seperti perencanaan ruangan dan pemilihan material. Di India, insinyur sipil dikenal sebagai perencana fasilitas.

Di beberapa negara, seorang insinyur jasa bangunan adalah seorang insinyur Sipil Senior dengan pengalaman dalam Konstruksi Bangunan, Pemeliharaan Bangunan, Manajemen, integrasi layanan bangunan listrik, mekanik, api, hidrolik, keamanan dan komunikasi, yang mengelola dan memberikan desain rinci terintegrasi dari berbagai disiplin ilmu untuk memastikan bahwa bangunan tersebut disampaikan dengan cara "biaya paling rendah yang dapat diterima secara teknis", dengan penekanan pada biaya konstruksi dan biaya operasional.

Cakupan

Insinyur jasa bangunan bertanggung jawab atas desain, pemasangan, pengoperasian, dan pemantauan layanan teknis di gedung (termasuk Teknik Sipil, mekanikal, elektrikal, juga dikenal sebagai MEP atau HVAC), untuk memastikan pengoperasian yang aman, nyaman, dan ramah lingkungan. Insinyur jasa bangunan bekerja sama dengan profesional konstruksi lainnya seperti arsitek, insinyur struktur dan surveyor kuantitas. Insinyur jasa bangunan mempengaruhi desain arsitektur bangunan, khususnya fasad, dalam kaitannya dengan efisiensi energi dan lingkungan dalam ruangan, dan dapat mengintegrasikan produksi energi lokal (misalnya fotovoltaik terintegrasi fasad) atau fasilitas energi skala komunitas (misalnya pemanasan distrik). Oleh karena itu, insinyur layanan bangunan memainkan peran penting dalam desain dan pengoperasian bangunan hemat energi (termasuk bangunan hijau, rumah pasif, dan rumah Plus, dan bangunan Zero-energi). Dengan bangunan yang menyumbang sekitar sepertiga dari semua emisi karbon dan lebih dari setengah dari permintaan listrik global, insinyur layanan bangunan memainkan peran penting dalam perpindahan ke masyarakat rendah karbon, sehingga mengurangi pemanasan global.

Jalur karir seorang insinyur jasa bangunan dapat mengambil berbagai arah yang sangat luas. Dalam bidang yang luas dari rekayasa jasa bangunan, peran baru muncul, misalnya spesialisasi dalam energi terbarukan, keberlanjutan, teknologi rendah karbon, manajemen energi, otomatisasi bangunan, dan pemodelan informasi bangunan (BIM). Insinyur jasa bangunan semakin mencari status sebagai LEED (Kepemimpinan dalam Desain Energi dan Lingkungan) yang terakreditasi, BREEAM (Metode Penilaian Lingkungan BRE), atau auditor CIBSE Low Carbon Consultants (LCC) dan Energy Assesor (LCEA), selain status mereka sebagai disewa/ insinyur profesional.

Rekayasa layanan bangunan mencakup lebih dari sekadar MEP atau HVAC), tetapi juga yang berikut:

  1. Layanan mekanik:
  • Pasokan energi – gas, listrik, dan sumber terbarukan
  • Eskalator dan lift
  • Pemanasan termasuk solusi berenergi rendah (suhu rendah)
  • ventilasi. Ini termasuk solusi kamar bersih (misalnya rumah sakit, laboratorium) dan ventilasi industri (ruang dan proses pabrik)
  • Pendingin udara dan aplikasi pendinginan lainnya
  1. Layanan listrik:
  • Sistem tegangan rendah (LV), papan distribusi dan switchgear
  • Jalur komunikasi, telepon dan jaringan IT (ICT)
  • Otomatisasi bangunan
  • Perlindungan petir
  • Deteksi dan perlindungan kebakaran
  • Sistem keamanan dan alarm
  1. Pelayanan Kesehatan Masyarakat Teknik Sipil:
  • Solusi perpipaan untuk pasokan air, baik air dingin yang dapat diminum maupun DHW (air panas domestik),
  • Drainase air limbah (sewage) dari dalam gedung dan drainase/pengolahan limpasan permukaan eksternal di sekitar gedung. Meningkatkan penggunaan daur ulang air abu-abu dan solusi untuk menunda limpasan (misalnya atap hijau dan lapisan resapan)
  • Solusi untuk kebersihan dan sanitasi, termasuk pembersihan, kualitas udara dalam ruangan, dan teknologi kesehatan (misalnya bangsal isolasi)
  1. Lainnya:
  • Fitur terintegrasi bangunan seperti pendinginan pasif
  • Pencahayaan alami dan pencahayaan buatan, dan fasad bangunan
  • Fisika bangunan, terutama yang berkaitan dengan perpindahan panas dan kelembaban, dll.
  • Desain kolam renang kompetisi dan olimpiade
  • Desain stasiun pompa serta rumah pompa
  • Mengintegrasikan, memulihkan, dan merancang layanan gedung baru untuk proyek konservasi arsitektur

Contoh peran/tugas seorang Insinyur Jasa Bangunan mungkin memiliki:

  • Konsultan Insinyur Sipil: Merancang tata letak dan persyaratan untuk layanan bangunan untuk pengembangan perumahan atau komersial. Manajemen desain adalah sisi bisnis desain, yang bertujuan untuk menciptakan lingkungan yang tepat untuk mengontrol dan mendukung budaya kreativitas dan inovasi, dan untuk merangkul sifat iteratif desain yang melibatkan banyak disiplin ilmu yang, secara kolektif, akan memberikan solusi desain – dan semua sekaligus memastikan bahwa tujuan dan sasaran komersial organisasi tercapai dan semua dilakukan dengan cara yang etis. Biasanya instalasi teknik jasa bangunan bernilai 30–60% dari total nilai kontrak. Manajemen desain tidak sama dengan manajemen proyek. Manajemen proyek berfokus pada keterampilan administratif yang lebih luas tetapi biasanya tidak bersimpati pada kekhasan dalam memberikan desain yang berfungsi sepenuhnya terkoordinasi, dengan mempertimbangkan sifatnya yang unik dan berurusan dengan perubahan persyaratan klien dan faktor eksternal di mana hanya ada sedikit kendali .
  • Kontraktor: Mengawasi pemasangan layanan bangunan, sistem komisioning. Ini termasuk tugas-tugas seperti TABS.
  • Manajer fasilitas: Operasi, servis, dan komisioning terus menerus dari bangunan dan pabrik yang ada.

Badan profesional

Dua badan profesional yang paling menonjol adalah:

  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) didirikan pada tahun 1894.
  • Chartered Institution of Building Services Engineers (CIBSE) didirikan pada tahun 1976, dan menerima Piagam Kerajaan di Inggris Raya, dan secara resmi mengakui teknik layanan bangunan sebagai sebuah profesi.

Pendidikan

Insinyur jasa bangunan biasanya memiliki gelar akademis di bidang teknik sipil, teknik arsitektur, teknik jasa bangunan, teknik mesin atau teknik listrik. Lama studi untuk gelar tersebut biasanya 3-4 tahun untuk Sarjana Teknik (BEng) atau Sarjana Sains (BSc) dan 5-6 tahun untuk Magister Teknik (MEng).

Di Inggris, Chartered Institution of Building Services Engineers (CIBSE) mengakreditasi gelar universitas di Building Services Engineering. Di Amerika Serikat, ABET mengakreditasi derajat.

Perangkat lunak rekayasa layanan bangunan

Banyak tugas dalam rekayasa layanan bangunan melibatkan penggunaan perangkat lunak rekayasa, misalnya untuk merancang/memodelkan atau menggambar solusi. Jenis alat yang paling umum adalah simulasi energi seluruh bangunan dan CAD (tradisional 2D) atau Building Information Modeling (BIM) yang semakin populer yaitu 3D. Perangkat lunak BIM 3D dapat memiliki alat terintegrasi untuk perhitungan Layanan Bangunan seperti mengukur saluran ventilasi atau memperkirakan tingkat kebisingan. Penggunaan lain dari 3D/4D BIM adalah yang memberdayakan pengambilan keputusan yang lebih tepat dan koordinasi yang lebih baik antara berbagai disiplin ilmu, seperti 'pengujian tabrakan'.

 

Disadur dari:: en.wikipedia.org

Selengkapnya
Teknik Jasa Bangunan

Teknik Industri

Pengertian dari Manajemen aset

Dipublikasikan oleh Muhammad Ilham Maulana pada 30 Mei 2024


Manajemen aset adalah pendekatan sistematis terhadap tata kelola dan realisasi nilai dari hal-hal yang menjadi tanggung jawab kelompok atau entitas, selama seluruh siklus hidupnya. Ini mungkin berlaku baik untuk aset berwujud (benda fisik seperti bangunan atau peralatan) dan aset tidak berwujud (seperti modal manusia, kekayaan intelektual, niat baik atau aset keuangan). Manajemen aset adalah proses sistematis untuk mengembangkan, mengoperasikan, memelihara, meningkatkan, dan membuang aset dengan cara yang paling hemat biaya (termasuk semua biaya, risiko, dan atribut kinerja).

Istilah ini biasa digunakan di sektor keuangan untuk menggambarkan orang dan perusahaan yang mengelola investasi atas nama orang lain. Termasuk, misalnya, manajer investasi yang mengelola aset dana pensiun. Ini juga semakin banyak digunakan baik di dunia bisnis maupun sektor infrastruktur publik untuk memastikan pendekatan terkoordinasi untuk optimalisasi biaya, risiko, layanan/kinerja, dan keberlanjutan. ISO 55000, sedang dikembangkan oleh ISO TC 251, memberikan pengenalan dan spesifikasi persyaratan untuk sistem manajemen untuk manajemen aset.

Menurut industri

Manajemen aset keuangan

Penggunaan yang paling umum dari istilah manajer portofolio (manajer aset) mengacu pada manajemen investasi, sektor industri jasa keuangan yang mengelola dana investasi dan rekening klien terpisah. Manajemen aset adalah bagian dari perusahaan keuangan yang mempekerjakan para ahli yang mengelola uang dan menangani investasi klien. Ini dilakukan baik secara aktif maupun pasif.

  • Manajemen aset aktif: ini melibatkan tugas-tugas aktif seperti mempelajari aset klien hingga merencanakan dan menjaga investasi, semua hal dijaga oleh manajer aset, dan rekomendasi diberikan berdasarkan kesehatan keuangan setiap klien. Manajemen aset aktif datang dengan harga yang lebih tinggi bagi investor karena lebih banyak pekerjaan yang terlibat.
  • Manajemen aset pasif: aset dialokasikan untuk mencerminkan pasar atau indeks sektor. Tidak seperti manajemen aset aktif, manajemen aset pasif jauh lebih sulit. Ini juga kurang disesuaikan, membutuhkan lebih sedikit perawatan, dan akibatnya lebih murah bagi investor.

Manajemen aset fisik dan infrastruktur

Manajemen aset infrastruktur adalah kombinasi dari manajemen, keuangan, ekonomi, teknik, dan praktik lain yang diterapkan pada aset fisik untuk memberikan tingkat layanan nilai terbaik untuk biaya yang terkait. Ini mencakup pengelolaan seluruh siklus hidup—termasuk desain, konstruksi, komisioning, pengoperasian, pemeliharaan, perbaikan, modifikasi, penggantian, dan penonaktifan/pembuangan—aset fisik dan infrastruktur. Operasi dan pemeliharaan aset dalam lingkungan anggaran terbatas memerlukan skema prioritas. Sebagai ilustrasi, perkembangan energi terbarukan baru-baru ini telah melihat munculnya manajer aset yang efektif yang terlibat dalam pengelolaan tata surya (taman surya, atap, dan kincir angin). Tim ini sering berkolaborasi dengan manajer aset keuangan untuk menawarkan solusi siap pakai kepada investor. Manajemen aset infrastruktur menjadi sangat penting di sebagian besar negara maju pada abad ke-21, karena jaringan infrastruktur mereka hampir selesai pada abad ke-20 dan mereka harus mengelola untuk mengoperasikan dan memeliharanya dengan biaya yang efektif. Manajemen aset perangkat lunak adalah salah satu jenis manajemen aset infrastruktur.

Organisasi Internasional untuk Standardisasi menerbitkan standar sistem manajemen untuk manajemen aset pada tahun 2014. Seri ISO 55000 menyediakan terminologi, persyaratan, dan panduan untuk menerapkan, memelihara, dan meningkatkan sistem manajemen aset yang efektif. Kunci pembentukan struktur semacam ini berhubungan langsung dengan pemerintahan daerah.

  • Manajemen aset fisik: praktik mengelola seluruh siklus hidup (desain, konstruksi, komisioning, pengoperasian, pemeliharaan, perbaikan, modifikasi, penggantian, dan penonaktifan/pembuangan) aset fisik dan infrastruktur seperti struktur, produksi, dan pabrik layanan, pembangkit listrik , fasilitas pengolahan air dan limbah, jaringan distribusi, sistem transportasi, gedung, dan aset fisik lainnya. Meningkatnya ketersediaan data dari sistem aset memungkinkan prinsip Total Biaya Kepemilikan diterapkan pada manajemen fasilitas sistem individu, gedung, atau di seluruh kampus. Manajemen aset fisik terkait dengan manajemen kesehatan aset.
  • Manajemen aset infrastruktur memperluas tema ini terutama dalam kaitannya dengan sektor publik, utilitas, properti, dan sistem transportasi. Selain itu, Manajemen Aset dapat merujuk pada pembentukan antarmuka masa depan antara lingkungan manusia, buatan, dan alam melalui proses keputusan kolaboratif dan berbasis bukti.
  • Manajemen aset tetap: proses akuntansi yang berupaya melacak aset tetap untuk akuntansi keuangan
  • Manajemen aset TI: seperangkat bisnis praktik yang menggabungkan fungsi keuangan, kontrak, dan inventaris untuk mendukung manajemen siklus hidup dan pengambilan keputusan strategis untuk lingkungan TI.
  • Manajemen aset digital: bentuk manajemen konten media elektronik yang mencakup aset digital

Manajemen Aset Perusahaan

Sistem manajemen aset perusahaan (EAM) adalah sistem informasi aset yang mendukung pengelolaan aset organisasi. EAM mencakup daftar aset (inventaris aset dan atributnya) yang dikombinasikan dengan sistem manajemen pemeliharaan terkomputerisasi (CMMS) dan modul lain (seperti manajemen inventaris atau material). Aset yang terdistribusi secara geografis, saling berhubungan atau berjejaring, seringkali juga direpresentasikan melalui penggunaan sistem informasi geografis (SIG).

Registri aset GIS-sentris menstandarisasi data dan meningkatkan interoperabilitas, memberikan pengguna kemampuan untuk menggunakan kembali, mengoordinasikan, dan berbagi informasi secara efisien dan efektif. Platform GIS yang dikombinasikan dengan informasi aset "keras" dan "lunak" membantu menghilangkan silo tradisional fungsi departemen. Sementara aset keras adalah aset fisik atau aset infrastruktur yang khas, aset lunak mungkin termasuk izin, lisensi, merek, paten, hak jalan, dan hak atau barang berharga lainnya.

Sistem EAM hanyalah salah satu 'memungkinkan' pengelolaan aset yang baik. Manajer aset perlu membuat keputusan yang tepat untuk memenuhi tujuan organisasi mereka, ini membutuhkan informasi aset yang baik tetapi juga kepemimpinan, kejelasan prioritas strategis, kompetensi, kolaborasi dan komunikasi antar departemen, tenaga kerja, dan keterlibatan rantai pasokan, sistem manajemen risiko dan perubahan, kinerja pemantauan, dan perbaikan berkelanjutan.

Manajemen aset publik

Manajemen aset publik memperluas definisi manajemen aset perusahaan (EAM) dengan memasukkan pengelolaan semua hal yang bernilai ke yurisdiksi kota dan harapan warganya. Contoh di mana manajemen aset publik digunakan adalah pengembangan dan perencanaan penggunaan lahan.

Manajemen aset intelektual dan non-fisik

Semakin baik konsumen dan organisasi menggunakan aset, mis. perangkat lunak, musik, buku, dll. di mana hak pengguna dibatasi oleh perjanjian lisensi. Sistem manajemen aset akan mengidentifikasi kendala pada lisensi tersebut, mis. sebuah periode. Jika, misalnya, satu perangkat lunak melisensikan, seringkali lisensi tersebut untuk jangka waktu tertentu. Adobe dan Microsoft keduanya menawarkan lisensi perangkat lunak berbasis waktu. Baik di dunia korporat maupun konsumen, ada perbedaan antara kepemilikan perangkat lunak dan pembaruan perangkat lunak. Seseorang mungkin memiliki versi perangkat lunak, tetapi bukan versi perangkat lunak yang lebih baru. Ponsel sering tidak diperbarui oleh vendor, dalam upaya untuk memaksa pembelian perangkat keras yang lebih baru. Perusahaan besar seperti Oracle, yang melisensikan perangkat lunak kepada klien membedakan antara hak untuk menggunakan dan hak untuk menerima pemeliharaan/dukungan.

 

Disadur dari:: en.wikipedia.org

Selengkapnya
Pengertian dari Manajemen aset

Teknik Industri

Peran Penting Antropometri dalam Desain Industri dan Ergonomi Modern

Dipublikasikan oleh Muhammad Ilham Maulana pada 30 Mei 2024


Antropometri (dari bahasa Yunani Kuno ἄνθρωπος (ánthrōpos) 'manusia', dan μέτρον (métron) 'ukuran') mengacu pada pengukuran individu manusia. Sebagai alat awal dari antropologi fisik, antropometri telah digunakan untuk identifikasi, untuk tujuan memahami variasi fisik manusia, dalam paleoantropologi dan dalam berbagai upaya untuk menghubungkan ciri-ciri fisik dengan ciri-ciri rasial dan psikologis.

Antropometri melibatkan pengukuran sistematis dari sifat-sifat fisik tubuh manusia, terutama deskriptor dimensi ukuran dan bentuk tubuh. Karena metode dan pendekatan yang umum digunakan dalam menganalisis standar hidup tidak cukup membantu, sejarah antropometri menjadi sangat berguna bagi para sejarawan dalam menjawab pertanyaan-pertanyaan yang menarik bagi mereka. 

Saat ini, antropometri memainkan peran penting dalam desain industri, desain pakaian, ergonomi, dan arsitektur di mana data statistik tentang distribusi dimensi tubuh dalam populasi digunakan untuk mengoptimalkan produk. Perubahan gaya hidup, nutrisi, dan komposisi etnis populasi menyebabkan perubahan dalam distribusi dimensi tubuh (misalnya peningkatan obesitas) dan memerlukan pembaruan koleksi data antropometri secara teratur.

Sejarah

Sejarah antropometri mencakup dan menjangkau berbagai konsep, baik ilmiah maupun pseudosaintifik, seperti kraniometri, paleoantropologi, antropologi biologis, frenologi, fisiognomi, forensik, kriminologi, filogeografi, asal-usul manusia, dan deskripsi kranio-fasial, serta korelasi antara berbagai antropometri dengan identitas pribadi, tipologi mental, kepribadian, kubah tengkorak, dan ukuran otak, serta faktor lainnya.

Dalam berbagai waktu dalam sejarah, aplikasi antropometri telah berkisar dari deskripsi ilmiah yang akurat dan analisis epidemiologi hingga alasan untuk egenetika dan gerakan sosial yang terang-terangan rasis. Salah satu penyalahgunaannya adalah pseudosains yang didiskreditkan, yaitu fenologi.

Variasi individu

  • Auxologis

Auxologic adalah istilah yang luas yang mencakup studi tentang semua aspek pertumbuhan fisik manusia.

  • Tinggi badan

Tinggi badan manusia sangat bervariasi antar individu dan antar populasi karena berbagai faktor biologis, genetik, dan lingkungan yang kompleks. Karena masalah metodologis dan praktis, pengukurannya juga tunduk pada kesalahan yang cukup besar dalam pengambilan sampel statistik.

Tinggi rata-rata dalam populasi yang homogen secara genetik dan lingkungan sering kali proporsional di sejumlah besar individu. Variasi tinggi badan yang luar biasa (sekitar 20% deviasi dari rata-rata populasi) dalam populasi seperti itu kadang-kadang disebabkan oleh gigantisme atau dwarfisme, yang disebabkan oleh gen tertentu atau kelainan endokrin. Penting untuk dicatat bahwa tingkat variasi yang tinggi terjadi di antara tubuh yang paling 'umum' sekalipun (66% dari populasi), dan dengan demikian tidak ada orang yang dapat dianggap 'rata-rata'.

Dalam perbandingan populasi yang paling ekstrem, misalnya, tinggi rata-rata wanita di Bolivia adalah 142,2 cm (4 kaki 8,0 inci) sementara tinggi rata-rata pria di Pegunungan Alpen Dinar adalah 185,6 cm (6 kaki 1,1 inci), perbedaan rata-rata 43,4 cm (1 kaki 5,1 inci). Demikian pula, individu terpendek dan tertinggi, Chandra Bahadur Dangi dan Robert Wadlow, masing-masing berkisar antara 53-272 cm (1 kaki 9 inci - 8 kaki 11 inci). 
Rentang usia di mana sebagian besar betina berhenti tumbuh adalah 15-18 tahun dan rentang usia di mana sebagian besar jantan berhenti tumbuh adalah 18-21 tahun. 

  • Berat badan

Berat badan manusia sangat bervariasi baik secara individu maupun antar populasi, dengan contoh orang dewasa yang terdokumentasi paling ekstrem adalah Lucia Zarate yang memiliki berat badan 2,1 kg (4,7 lb), dan Jon Brower Minnoch yang memiliki berat badan 640 kg (1.400 lb), dan dengan populasi yang ekstrem berkisar antara 49,6 kg (109,3 lb) di Bangladesh hingga 87,4 kg (192,7 lb) di Mikronesia. 

  • Organ tubuh

Ukuran otak orang dewasa bervariasi dari 974,9 cm3 (59,49 cu in) hingga 1.498,1 cm3 (91,42 cu in) pada wanita dan 1.052,9 cm3 (64,25 cu in) hingga 1.498,5 cm3 (91,44 cu in) pada pria, dengan rata-rata 1.130 cm3 (69 cu in) dan 1.260 cm3 (77 cu in). Belahan otak kanan biasanya lebih besar daripada kiri, sedangkan belahan otak kecil biasanya memiliki ukuran yang lebih mirip.
Ukuran perut manusia sangat bervariasi pada orang dewasa, dengan satu studi menunjukkan volume mulai dari 520 cm3 (32 cu in) hingga 1.536 cm3 (93,7 cu in) dan berat mulai dari 77 gram (2,7 ons) hingga 453 gram (16,0 ons).  Alat kelamin pria dan wanita menunjukkan variasi individu yang cukup besar, dengan ukuran penis yang berbeda secara substansial dan ukuran vagina yang berbeda secara signifikan pada orang dewasa yang sehat. 

  • Estetika

Kecantikan dan daya tarik fisik manusia telah menjadi keasyikan sepanjang sejarah yang sering kali bersinggungan dengan standar antropometri. Tata rias, simetri wajah, dan rasio pinggang-pinggul adalah tiga contoh di mana pengukuran biasanya dianggap sebagai hal yang mendasar.

Ilmu pengetahuan yang berevolusi

Studi antropometri saat ini dilakukan untuk menyelidiki signifikansi evolusi dari perbedaan proporsi tubuh antara populasi yang nenek moyangnya hidup di lingkungan yang berbeda. Populasi manusia menunjukkan pola variasi iklim yang mirip dengan mamalia bertubuh besar lainnya, mengikuti aturan Bergmann, yang menyatakan bahwa individu di iklim dingin akan cenderung lebih besar daripada individu di iklim hangat, dan aturan Allen, yang menyatakan bahwa individu di iklim dingin akan cenderung memiliki tungkai yang lebih pendek dan kekar daripada individu di iklim hangat.

Pada tingkat mikroevolusi, para antropolog menggunakan variasi antropometrik untuk merekonstruksi sejarah populasi berskala kecil. Sebagai contoh, penelitian John Relethford terhadap data antropometri awal abad ke-20 dari Irlandia menunjukkan bahwa pola geografis proporsi tubuh masih menunjukkan jejak invasi oleh Inggris dan Norse berabad-abad yang lalu.

Demikian pula, indeks antropometrik, yaitu perbandingan perawakan manusia digunakan untuk menggambarkan tren antropometrik. Penelitian ini dilakukan oleh Jörg Baten dan Sandew Hira dan didasarkan pada temuan antropologis bahwa tinggi badan manusia ditentukan oleh kualitas nutrisi, yang biasanya lebih tinggi di negara-negara yang lebih maju. Penelitian ini didasarkan pada kumpulan data dari para pekerja migran kontrak asal Tiongkok Selatan yang dikirim ke Suriname dan Indonesia, yang mencakup 13.000 orang.

Alat ukur.

  • Pemindai tubuh 3D

Saat ini, antropometri dapat dilakukan dengan pemindai tiga dimensi. Sebuah studi kolaboratif global untuk meneliti penggunaan pemindai tiga dimensi untuk perawatan kesehatan diluncurkan pada bulan Maret 2007. Studi Benchmark Tubuh akan menyelidiki penggunaan pemindai tiga dimensi untuk menghitung volume dan volume segmental dari pemindaian tubuh individu. Tujuannya adalah untuk menentukan apakah Indeks Volume Tubuh memiliki potensi untuk digunakan sebagai pengukuran antropometri berbasis komputer jangka panjang untuk perawatan kesehatan. Pada tahun 2001, Inggris melakukan survei ukuran terbesar hingga saat ini dengan menggunakan pemindai. 

Sejak saat itu, beberapa survei nasional telah mengikuti langkah perintis Inggris, terutama SizeUSA, SizeMexico, dan SizeThailand, yang terakhir ini masih berlangsung. SizeUK menunjukkan bahwa bangsa ini telah menjadi lebih tinggi dan lebih berat, tetapi tidak sebanyak yang diharapkan. Sejak tahun 1951, saat survei wanita terakhir dilakukan, berat rata-rata wanita telah naik dari 62 menjadi 65 kg. Namun, penelitian terbaru menunjukkan bahwa postur tubuh partisipan secara signifikan memengaruhi pengukuran yang dilakukan, ketepatan pemindai tubuh 3D mungkin tidak cukup tinggi untuk toleransi industri, dan pengukuran yang dilakukan mungkin relevan atau tidak relevan untuk semua aplikasi (misalnya konstruksi garmen). Terlepas dari keterbatasan saat ini, Pemindaian Tubuh 3D telah disarankan sebagai pengganti teknologi prediksi pengukuran tubuh yang (meskipun memiliki daya tarik yang besar) belum dapat diandalkan seperti data manusia yang sebenarnya.

  • Baropodografi

Perangkat baropodografi terbagi dalam dua kategori utama: (i) berbasis lantai, dan (ii) di dalam sepatu. Teknologi yang mendasari beragam, mulai dari susunan sensor piezoelektrik hingga pembiasan cahaya, tetapi bentuk akhir dari data yang dihasilkan oleh semua teknologi modern adalah gambar 2D atau rangkaian gambar 2D dari tekanan yang bekerja di bawah permukaan plantar kaki. Dari data ini, variabel lain dapat dihitung (lihat analisis data).

Resolusi spasial dan temporal dari gambar yang dihasilkan oleh sistem pedobarografi komersial berkisar antara 3 hingga 10 mm dan 25 hingga 500 Hz. Teknologi sensor membatasi resolusi yang lebih halus. Resolusi tersebut menghasilkan area kontak sekitar 500 sensor (untuk kaki manusia dewasa dengan luas permukaan sekitar 100 cm2). Untuk durasi fase kuda-kuda sekitar 0,6 detik selama berjalan normal, sekitar 150.000 nilai tekanan, tergantung pada spesifikasi perangkat keras, direkam untuk setiap langkah.

  • Neuroimaging

Pengukuran langsung melibatkan pemeriksaan otak dari mayat, atau yang lebih baru, teknik pencitraan seperti MRI, yang dapat digunakan pada orang yang masih hidup. Pengukuran tersebut digunakan dalam penelitian tentang ilmu saraf dan kecerdasan. Data volume otak dan data kraniometri lainnya digunakan dalam ilmu pengetahuan umum untuk membandingkan spesies hewan modern dan untuk menganalisis evolusi spesies manusia dalam arkeologi.

Epidemiologi dan antropologi medis

Pengukuran antropometri juga memiliki kegunaan dalam epidemiologi dan antropologi medis, misalnya dalam membantu menentukan hubungan antara berbagai ukuran tubuh (tinggi, berat, persentase lemak tubuh, dll.) dan hasil medis. Pengukuran antropometri sering digunakan untuk mendiagnosis malnutrisi dalam pengaturan klinis yang miskin sumber daya.


Disadur dari: en.wikipedia.org

Selengkapnya
Peran Penting Antropometri dalam Desain Industri dan Ergonomi Modern
« First Previous page 101 of 773 Next Last »