Jalan

Jalan Bebas Hambatan

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Jalan bebas hambatan (Inggris: Freeway atau Highway) adalah jalan raya yang dibelah oleh median jalan atau pemisah jalan dan merupakan jalan dengan akses terbatas. Umumnya jalan bebas hambatan dibangun untuk mengatasi kemacetan lalu lintas ataupun untuk mempersingkat jarak dari satu tempat ke tempat lain.

Di Indonesia, istilah jalan bebas hambatan sering digunakan secara bergantian dengan jalan tol, karena jalan bebas hambatan di seluruh Indonesia umumnya berbayar. Jalan bebas hambatan di Indonesia hanya gratis sebelum diresmikan penggunaannya atau saat belum ada penentuan tarifnya oleh kewenangan berdasarkan perundang-undangan yang berlaku.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Jalan Bebas Hambatan

Tenaga Surya

Pompa Bertenaga Surya

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Pompa bertenaga surya beroperasi dengan listrik yang dihasilkan oleh panel fotovoltaik atau energi panas terpancar yang tersedia dari sinar matahari yang dikumpulkan bertolak belakang dari listrik jaringan atau pompa air diesel. Pengoperasian pompa bertenaga surya lebih ekonomis terutama sebab biaya operasi dan pemeliharaan yang lebih murah serta mempunyai dampak lingkungan yang lebih sedikit dibandingkan dengan mesin pembakaran internal (ICE). Pompa surya berguna jika listrik jaringan tidak tersedia dan sumber alternatif (khususnya angin) tidak memberikan energi yang cukup.

Komponen

Sistem pompa bertenaga panel surya fotovoltaik memiliki tiga bagian:

  • Panel surya
  • Pengontrol
  • Pompa

Panel surya memakan sebagian besar (hingga 80%) dari biaya sistem. Ukuran sistem PV secara langsung bergantung pada ukuran pompa, jumlah air yang dibutuhkan (m³/d) dan radiasi matahari yang dibutuhkan.

Tujuan dari pengontrol sendiri ada dua. Pertama, mencocokkan daya output yang diterima pompa dengan daya input yang tersedia dari panel surya. Kedua, pengontrol biasanya menyediakan perlindungan voltase rendah, dimana sistem akan dimatikan jika tegangan terlalu rendah atau tinggi untuk mengoperasikan rentang tegangan dari pompa tersebut. Hal ini meningkatkan masa pakai pomba sehingga mengurangi kebutuhan akan perawatan. Fungsi tambahan lainnya termasuk mematikan sistem secara otomatis ketika tingkat sumber air rendah atau saat tangki penyimpan penuh, mengatur tekanan output air, mencampur daya input dengan panel surya dan sumber daya alternatif seperti listrik jaringan dan generator bensin, dan memantau serta mengelola sistem dari jarak jauh melalui portal online yang ditawarkan sebagai layanan cloud oleh produsen.

Voltase motor pompa surya dapat berupa AC (arus bolak-balik) atau DC (arus searah). Motor arus searah digunakan untuk pengaplikasian hal yang kecil hingga sedang sampai dengan 4 kW, dan cocok untuk penerapan seperti air mancur taman, landscaping, air minum untuk ternak atau proyek irigasi kecil. Sebab sistem DC cenderung memiliki tingkat efiesiensi yang lebih tinggi dibanding pompa AC yang berukuran sama, juga biayanya berkurang karenan panel surya yang lebih kecil dapat dipakai.

Terakhir, jika pompa surya arus bolak-balik digunakan, diperlukan inverter untuk mengubah arus searah dari panel surya menjadi arus bolak-balik untuk pompa. Rentang daya inverter yang didukung berkisar dari 0,15 hingga 55 kW dan dapat digunakan untuk sistem irigasi yang besar. Akan tetapi, panel dan inverter harus memilki ukuran yang sesuai untuk mengakomodasi karakteristik arus masuk motor AC. Dalam membantu penyesuaian ukuran, produsen terkemuka menyediakan perangkat lunak pengatur ukuran yang telah diuji oleh perusahaan sertifikasi pihak ketiga. Perangkat lunak pengatur ukuran ini dapat mencakup proyeksi output air bulanan yang bervariasi akibat perubahan musim dalam isolasi.

Pompa air

Pompa air bertenaga surya juga bisa menyalurkan air minum serta air untuk keperluan ternak maupun irigasi. Pompa air surya sangat berguna dalam skala kecil atau irigasi berbasis komunitas, sebab irigasi berskala besar membutuhkan air dalam volume besar yang pada nantinya juga membutuhkan panel surya yang besar. Karena air mungkin hanya diperlukan selama beberapa waktu dalam setahun, susunan panel surya yang besar ini akan menyediakan energi berlebih yang tidak diperlukan, sehingga membuat sistem tidak efisien.

Sistem pompa air PV surya digunakan untuk irigasi dan air minum di India. Mayoritas pompa dilengkapi dengan motor 2-3,7 kW yang menerima energi dari susunan PV 4,8 kW. Sistem 3,7 kW dapat menyalurkan sekitar 124.000 liter air per hari dari total setoff head 50 meter dan dynamic head 70 meter. Hingga 30 Agustus 2016. total 120.000 sistem pompa air PV surya telah dipasang di India dan banyak tempat lain di seluruh dunia. Penyimpanan energi dalam bentuk tampungan air lebih baik daripada dalam bentuk baterai untuk pompa air tenaga surya karena tidak ada perantara transformasi dari satu bentuk energi ke bentuk lainnya. Mekanika pompa yang paling umum digunakan ialah pompa sentrifugal, pompa multistage, pompa lubang bor, dan pompa heliks. Konsep ilmiah penting dari dinamika fluida seperti tekanan vs head, head pompa, kurva pompa, kurva sistem, dan net suction head sangat penting dalam keberhasilan penerapan dan desain pompa bertenaga surya.

Minyak dan gas

Dalam menghadapi publikasi negatif terkait dengan dampak lingkungan dari bahan bakar fosil, termasuk fracking, industri mulai menggunakan sistem pompa bertenaga surya. Banyak sumur minyak dan gas memerlukan injeksi (pengukuran) yang akurat dari berbagai bahan kimia di bawah tekanan untuk mempertahankan operasi mereka dan meningkatkan tingkat ekstrasi. Secara historis, pompa injeksi kimia (CIP) ini digerakkan oleh motor penggerak gas yang memanfaatkan tekanan sumur gas dan membuang gas mentah menuju atmosfer. Pompa listrik bertenaga surya (Solar CIP) dapat mengurangi emisi gas rumah kaca tersebut. Susunan surya (sel fotovoltaik) tak hanya menyediakan sumber energi yang berkelanjutan bagi CIP tetapi juga dapat menyediakan sumber listrik untuk menjalankan diagnostik tipe SCADA dengan kendali jarak jauh dan komunikasi satelit/sell dari lokasi yang terpencil hingga desktop atau monitor komputer notebook.

Mesin Stirling

Alih-alih menghasilkan listrik untuk menghidupkan motor, sinar matahari bisa difokuskan pada penukar panas dari mesin Stirling dan digunakan untuk menggerakan pompa secara mekanis. Ini membebani biaya panel surya dan peralatan listrik. Dalam beberapa kasus, mesin Stirling mungkin cocok untuk fabrikasi lokal, sehingga menghilangkan kesulitan dalam mengimpor peralatan. Salah satu bentuk mesin Stirling ialah fluidyne engine yang beroperasi langsung pada pada fluida yang dipompa sebagai piston. Pompa surya Fluidyne telah dipelajari sejak tahun 1987. Setidaknya satu pabrikan telah melakukan tes dengan pompa bertenaga surya Stirling.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Pompa Bertenaga Surya

Geodesi dan Geomatika

Kartografi

Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 18 Februari 2025


Kartografi ( /kɑːrˈtɒɡrəfi/; berasal dari bahasa Yunani chartes χάρτης, "papirus, selembar kertas, peta", dan graphein γράφειν, "tulis") merupakan sebuah studi dan seni membuat peta. Kartografi menggabungkan sainsestetika, dan teknik, untuk bisa menyatakan bahwa realitas (atau realitas yang dibayangkan) dapat dimodelkan dengan cara yang bisa mengomunikasikan informasi spasial secara efektif.

Tujuan mendasar dari kartografi tradisional adalah untuk:

  • Tetapkan agenda peta dan pilih ciri-ciri objek yang akan dipetakan. Ini adalah perhatian dari pengeditan peta. Ciri mungkin fisik, seperti jalan atau daratan, atau mungkin abstrak, seperti toponim atau batas politik.
  • Mewakili medan objek yang dipetakan pada media datar. Ini adalah perhatian dari proyeksi peta .
  • Menghilangkan karakteristik objek yang dipetakan yang tidak relevan dengan tujuan peta. Ini adalah perhatian generalisasi .
  • Kurangi kerumitan karakteristik yang akan dipetakan. Ini juga menjadi perhatian generalisasi.
  • Atur elemen peta untuk menyampaikan pesannya kepada audiensnya. Ini adalah perhatian dari desain peta .

Kartografi modern merupakan sebuah landasan teori dan praktik dari sistem informasi geografis dan ilmu pengetahuan informasi geografis.

Sejarah

Lukisan Batu Valcamonica (I), Paspardo r. 29, komposisi topografi, milenium ke-4 SM

Peta Bedolina dan penelusurannya, abad ke-6 hingga ke-4 SM

Sebuah peta abad Bizantiumke-14 menggambarkan Kepulauan Inggris diambil dari naskah Geografi Ptolemaeus, menggunakan angka Yunani untuk yang koordinatnya : 52-63 ° N dari khatulistiwa dan 6-33 ° E dari Meridian Utama Ptolemaeus di Kepulauan Beruntung .

Salinan dari peta TO dunia St. Isidorus. (1472)

Zaman kuno

Masih menjadi sebuah perdebatan mengenai apa sebenarnya peta paling awal dibuat, baik karena istilah "peta" tidak terdefinisi dengan baik dan karena beberapa artefak yang mungkin berupa peta mungkin sebenarnya adalah sesuatu yang lain. Sebuah lukisan dinding yang mungkin menggambarkan kota Anatolia kuno Çatalhöyük (sebelumnya dikenal sebagai Catal Huyuk atau Çatal Hüyük) telah tertanggal hingga akhir milenium ke-7 SM.  Di antara ukiran batu alpine prasejarah Gunung Bego (Prancis) dan Valcamonica (Italia), yang berasal dari milenium ke-4 SM, pola geometris yang terdiri dari persegi panjang bertitik dan garis ditafsirkan secara luas dalam literatur arkeologi sebagai penggambaran budidaya plot. Peta lain dari dunia kuno yang diketahui termasuk lukisan dinding Minoan "House of the Admiral" dari c. 1600 SM, menunjukkan komunitas tepi laut dalam perspektif miring, dan peta terukir kota suci Babilonia Nippur, dari periode Kassite (ke-14 – Abad ke-12 SM).  Peta dunia tertua yang masih hidup berasal dari Babilonia abad ke-9 SM.  Salah satunya menunjukkan Babel di Efrat, dikelilingi oleh AsyurUrartu  an beberapa kota, semuanya, pada gilirannya, dikelilingi oleh "sungai pahit" ( Oceanus ).  Yang lain menggambarkan Babel sebagai utara dari pusat dunia.

Orang Yunani dan Romawi kuno membuat peta dari zaman Anaximander pada abad ke-6 SM. Pada abad ke-2 M, Ptolemaeus menulis risalahnya tentang kartografi, Geographia. Di dalam buku ini berisi peta-peta dunia Ptolemeus, atau masyarakat Barat sekarang mengenalnya sebagai Oikumene . Pada awal abad ke-8, para sarjana Arab menerjemahkan karya para ahli geografi Yunani ke dalam bahasa Arab. 

Di zaman Tiongkok kuno, literatur geografis berasal dari abad ke-5 SM. Peta Tiongkok tertua yang masih ada sampai sekarang berasal dari Negara Qin, dibuat pada abad ke-4 SM selama periode Zaman Negara-negara Berperang di dalam buku Xin Yi Xiang Fa Yao yang diterbitkan pada tahun 1092 oleh ilmuwan TiongkokSu Song, berbentuk peta bintang pada proyeksi silinder ekuidistan.  Meskipun metode pembuatan bagan ini tampaknya telah ada di Tiongkok bahkan sebelum publikasi dan ilmuwan ini, signifikansi terbesar dari peta bintang oleh Su Song adalah bahwa mereka mewakili peta bintang tertua yang ada dalam bentuk cetakan .

Bentuk awal kartografi India termasuk penggambaran bintang kutub dan konstelasi sekitarnya. Bagan ini mungkin telah digunakan untuk navigasi. 

Abad Pertengahan dan Renaisans

Mappae mundi ("peta dunia") adalah peta dunia Eropa abad pertengahan. Sekitar 1.100 tempat diketahui masih ada: dari jumlah ini, 900 ditemukan dalam ilustrasi manuskrip dan sisanya ditemukan dalam dokumen-dokumen.

Tabula Rogeriana, digambar oleh Muhammad al-Idrisi untuk Roger II dari Sisilia pada 1154

Europa regina dalam " Cosmographia " karya Sebastian Münster, 1570

Ada tiga fungsi utama peta pada zaman Renaisans: 

  • Deskripsi umum tentang dunia
  • Navigasi dan pencarian jalur baru
  • Survei tanah dan manajemen properti

Teknologi pencetakan

Mengacu pada media yang digunakan untuk mentransfer gambar ke atas kertas ada dua jenis teknik seni grafis pada zaman Renaisans, yaitu cukil kayu dan intaglio pelat tembaga.

Tulisan

Huruf dalam pembuatan peta penting untuk menunjukkan informasi. Penulisan huruf halus sulit dilakukan dalam ukiran kayu, karena sering kali berubah menjadi persegi dan kotak, bertentangan dengan gaya penulisan bulat yang populer di Italia pada saat itu. Untuk meningkatkan kualitas, pembuat peta mengembangkan pahat halus untuk mengukir relief. Huruf Intaglio tidak mengalami masalah pada medium yang kasar sehingga dapat mengekspresikan kursif perulangan yang kemudian dikenal sebagai cancellaresca . Ada pukulan terbalik yang dibuat khusus yang juga digunakan dalam ukiran logam bersama dengan tulisan tangan bebas. 

Sumber Artikel : Wikipedia

Selengkapnya
Kartografi

Energi

Pembangkit Listrik Tenaga Surya

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Pembangkit listrik tenaga surya adalah pembangkit listrik yang mengubah energi surya menjadi energi listrik. Pembangkitan listrik dengan energi surya dapat dilakukan secara langsung menggunakan fotovoltaik, atau secara tidak langsung dengan pemusatan energi surya. Fotovoltaik mengubah secara langsung energi surya menjadi energi listrik menggunakan efek fotolistrik. Komponen utama di dalam pembangkit listrik tenaga surya meliputi modul surya, inverter, dan baterai listrik. Sistem pembangkit listrik tenaga surya terbagi menjadi sistem terhubung jala listrik, sistem tidak terhubung jala listrik, sistem tersebar, sistem terpusat dan sistem hibrida. Masing-masing jenis sistem mempunyai kondisi penerapannya tersendiri.

PLTS fotovoltaik di India

Pembangkit listrik tenaga surya dapat dibuat dengan beberapa jenis sistem penerapan antara lain sistem pencatu daya satelit, pencahayaan listrik, komunikasi, pompa air dan pendinginan. Pemusatan energi surya menggunakan sistem lensa atau cermin dikombinasikan dengan sistem pelacak untuk memfokuskan energi surya ke satu titik untuk menggerakan mesin kalor.

Komponen

Panel surya

Panel surya merupakan alat yang digunakan untuk mengubah energi surya menjadi energi listrik. Dalam pembangkit listrik tenaga surya, panel surya merupakan komponen terpenting untuk transformasi energi. Panel surya menghasilkan arus listrik dengan jenis arus searah. Keuntungan dari panel surya adalah energi listrik dapat disimpan di dalam baterai atau ultrakapasitor. Panel surya tersusun dari sel surya dalam jumlah yang banyak. Spesifikasi panel surya dinyatakan sesuai dengan kemampuannya menghasilkan daya listrik. Satuan yang digunakan adalah Watt.

Sel surya atau sel fotovoltaik adalah alat yang mengubah energi cahaya menjadi energi listrik menggunakan efek fotoelektrik. Dibuat pertama kali pada tahun 1880 oleh Charles Fritts. Dalam fotovoltaik, sel surya merupakan unit terkecil. Ukuran sel surya beragam mulai dari 0,5 sampai 4 inci. Energi listrik yang dihasilkan sel surya berbentuk arus searah. Sel surya terbuat dari bahan semikonduktor antara lain Silikon monokristalin, Silikon polikristalin, Silikon mikrokristalin, Kadmium telurida, Indium selenida, atau Sulfida. Sel surya termasuk tidak menghasilkan gas rumah kaca sehingga termasuk ramah lingkungan.

Modul surya

Modul surya adalah rangkaian listrik berisi sel-sel surya yang dibingkai dan dilaminasi untuk memperoleh tegangan listrik dan daya listrik. Tegangan kerja yang umum pada modul surya adalah 12 Volt dan 24 Volt. Daya listrik yang dihasilkan beragam dalam rentang 10 Wp hingga 300 Wp.

Modul surya memiliki unjuk kerja yang dinilai dari hubungan antara arus listrik terhadap tegangan listrik. Ketika hambatan listrik tidak ada di dalam modul, maka arus listrik akan mencapai nilai maksimum di dalam rangkaian listrik. Kondisi ini membuat arus hubung singkat karena tegangan listrik menjadi nol. Sebaliknya, ketika hambatan listrik bernilai sangat besar maka tidak ada pengaliran arus listrik sehingga terjadi tegangan terbuka. Tegangan maksimum dicapai selama tegangan terbuka dan rangkaian listrik dalam keadaan terbuka pula.

Inverter

Sistem pembangkit listrik tenaga surya menghasilkan arus listrik dengan jenis arus searah. Umumnya, pemakai energi listrik menggunakan arus bolak-balik. Karenanya, arus searah diubah terlebih dahulu menjadi arus bolak-balik menggunakan inverter agar dapat digunakan oleh pemakai energi listrik.

Fotovoltaik

Pembangkit listrik tenaga surya tipe fotovoltaik adalah pembangkit listrik yang menggunakan perbedaan tegangan akibat efek fotoelektrik untuk menghasilkan listrik. Solar panel terdiri dari 3 lapisan, lapisan panel P di bagian atas, lapisan pembatas di tengah, dan lapisan panel N di bagian bawah. Efek fotoelektrik adalah di mana sinar matahari menyebabkan elektron di lapisan panel P terlepas, sehingga hal ini menyebabkan proton mengalir ke lapisan panel N di bagian bawah dan perpindahan arus proton ini adalah arus listrik.

Jenis

Pembangkit listrik tenaga surya tak terhubung jaringan

Pembangkit listrik tenaga surya tak terhubung jaringan disebut juga sebagai pembangkit listrik tenaga surya berdiri sendiri. Pengelolaannya dilakukan secara bersama oleh para pemakai energi listrik hasil transformasi energi dari energi surya. Pembangkit listrik tenaga surya ini beroperasi secara mandiri tanpa terhubung dengan jaringan listrik. Penyimpanan energi listriknya membutuhkan baterai. Energi listrik yang disimpan dihasilkan di siang hari untuk memenuhi kebutuhan listrik di malam hari. Pengaturan pembangkitan listrik dengan sistem yang tidak terhubung dengan jaringan listrik terbagi menjadi kopel arus searah atau kopel arus bolak-balik. Sistem penyambungan arus searah menggunakan modul surya yang terhubung ke pengatur pengisian energi menuju ke sistem arus searah pada pembangkit listrik tenaga surya. Sementara itu, sistem penyambungan arus bolak-balik menggunakan inverter jaringan dan inverter baterai untuk menghubungkan rangkaian modul surya dan baterai ke sisi arus bolak-balik dari pembangkit listrik tenaga surya. Kelebihan daya listrik yang dihasilkan oleh pembangkit listrik tenaga surya akan disimpan di dalam baterai dengan terlebih dahulu diubah menjadi arus searah oleh inverter baterai.

Pembangkit listrik tenaga surya tersebar

Pembangkit listrik tenaga surya tersebar atau sistem penerangan individu merupakan sistem pencahayaan listrik sederhana yang dibuat menggunakan modul surya. Tegangan kerja yang dibutuhkannya hanya sebesar 12 Volt dengan arus searah. Modul surya yang digunakan mampu menghasilkan daya listrik dalam rentang 50 Wp sampai 300 Wp. Kesetimbangan energi surya menjadi faktor terpenting dalam perhitungan kapasitas sistem pembangkit listrik tenaga surya. Perhitungan memasukkan tiga hal yaitu potensi sumber energi surya, kurva beban harian yang menggambarkan keadaan normal dari kebutuhan beban harian serta spesifikasi peralatan pembangkitan energi surya.

Pemusatan energi surya

Sistem pemusatan energi surya menggunakan lensa atau cermin dan sistem pelacak untuk memfokuskan energi matahari dari luasan area tertentu ke satu titik. Panas yang terkonsentrasikan lalu digunakan sebagai sumber panas untuk pembangkitan listrik biasa yang memanfaatkan panas untuk menggerakkan generator. Sistem cermin parabola, lensa reflektor Fresnel, dan menara surya adalah teknologi yang paling banyak digunakan. Fluida kerja yang dipanaskan bisa digunakan untuk menggerakan generator (turbin uap konvensional hingga mesin Stirling) atau menjadi media penyimpan panas.

Ivanpah Solar Plant yang terleak di Gurun Mojave akan menjadi pembangkit listrik tenaga surya tipe pemusatan energi surya terbesar dengan daya mencapai 377 MegaWatt. Meski pembangunan didukung oleh pendanaan Amerika Serikat atas visi Barrack Obama mengenai program 10000 MW energi terbarukan, namun pembangunan ini menuai kontroversi karena mengancam keberadaan satwa liar di sekitar gurun.

Unjuk kerja

Unjuk kerja pembangkit listrik tenaga surya dapat diketahui dengan pemodelan spesifikasi panel surya yang digunakan. Dua parameter penting untuk menilai unjuk kerja pembangkit listrik tenaga surya adalah hubungan antara arus listrik terhadap tegangan listrik serta hubungan antara tegangan listrik terhadap daya listrik yang dihasilkan. Pembangkit listrik tenaga surya menghasilkan arus searah dengan menggunakan sel surya. Tegangan listrik yang dihasilkan oleh sel surya bernilai sangat kecil. Pemakaiannya memerluka peningkatan nilai tegangan yang menggunakan perangkat elektronika daya penaik tegangan arus searah. Sementara untuk pemakaiannya, arus searah diubah lagi menggunakan peralatan elektronika daya menjadi arus bolak-balik.

Keunggulan teknologi

Pembangkit listrik tenaga surya dapat dimanfaatkan untuk penyediaan akses listrik di kawasan perdesaan. Proses pembangkitan energi listrik menggunakan energi surya bersifat melimpah di daerah yang disinari matahari sepanjang tahun. Selain itu, pembangkit listrik tenaga surya juga tidak memerlukan bahan bakar. Di daerah pedesaan, bahan bakar umumnya dijual dengan harga yang mahal karena sulit untuk diperoleh dalam jumlah banyak. Keunggulan teknologi fotovoltaik untuk pembangkitan listrik adalah tidak memerlukan proses penyaluran energi dan energi listrik yang dihasilkan dapat digunakan langsung di tempat transformasi energi. Pembangkit listrik tenaga surya tidak memerlukan pemeliharaan skala besar sehingga menghemat biaya perawatan. Pengoperasian pembangkit listrik tenaga surya skala kecil juga tidak memerlukan tenaga kerja yang ahli. Dari segi lingkungan, pembangkit listrik tenaga surya tidak menghasilkan gas rumah kaca dan limbah yang berbahaya sehingga bersifat `.

Penerapan

Indonesia

Di Indonesia, PLTS terbesar pertama dengan kapasitas 2×1 MW terletak di Pulau Bali, tepatnya di dearah Karangasem dan Bangli. Pemerintah mempersilakan siapa saja untuk meniru dan membuatnya di daerah lain karena PLTS ini bersifat opensource atau tidak didaftarkan dalam hak cipta.[

Wilayah

  • Bali
  • Nusa Tenggara Barat
  • Alor, Nusa Tenggara Timur
  • Sulawesi Selatan
  • Sulawesi Utara.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Pembangkit Listrik Tenaga Surya

Geodesi dan Geomatika

Sistem Pemosisi Global

Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 18 Februari 2025


Sistem Pemosisi Global (bahasa InggrisGlobal Positioning System (GPS)) adalah sistem untuk menentukan letak di permukaan bumi dengan bantuan penyelarasan (synchronization) sinyal satelit. Sistem ini menggunakan 24 satelit yang mengirimkan sinyal gelombang mikro ke Bumi. Sinyal ini diterima oleh alat penerima di permukaan, dan digunakan untuk menentukan letak, kecepatan, arah, dan waktu. Sistem yang serupa dengan GPS antara lain GLONASS RusiaGalileo Uni EropaIRNSS India.

Sistem ini dikembangkan oleh Departemen Pertahanan Amerika Serikat, dengan nama lengkapnya adalah NAVSTAR GPS (kesalahan umum adalah bahwa NAVSTAR adalah sebuah singkatan, ini adalah salah, NAVSTAR adalah nama yang diberikan oleh John Walsh, seorang penentu kebijakan penting dalam program GPS). Kumpulan satelit ini diurus oleh 50th Space Wing Angkatan Antariksa Amerika Serikat. Biaya perawatan sistem ini sekitar US$750 juta per tahun,  termasuk penggantian satelit lama, serta riset dan pengembangan.

GPS Tracker atau sering disebut dengan GPS Tracking adalah teknologi AVL (Automated Vehicle Locater) yang memungkinkan pengguna untuk melacak posisi kendaraan, armada ataupun mobil dalam keadaan Real-Time. GPS Tracking memanfaatkan kombinasi teknologi GSM dan GPS untuk menentukan koordinat sebuah objek, lalu menerjemahkannya dalam bentuk peta digital.

Sumber Artikel : Wikipedia

Selengkapnya
Sistem Pemosisi Global

Geodesi dan Geomatika

Giroskop

Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 18 Februari 2025


Giroskop adalah perangkat untuk mengukur atau mempertahankan orientasi, yang berlandaskan pada prinsip-prinsip momentum sudut. Secara mekanis, giroskop berbentuk seperti sebuah roda berputar atau cakram di mana poros bebas untuk mengambil setiap orientasi. Meskipun orientasi ini tidak tetap, perubahannya dalam menanggapi torsi eksternal jauh lebih sedikit dan berlangsung dalam arah yang berbeda jika dibandingkan dengan tanpa momentum sudut, yang berkaitan dengan tingginya tingkat putaran dan inersia momen. Orientasi perangkat tetap sama, terlepas dari gerak platform pemasangan, karena pemasangan perangkat pada sebuah gimbal akan meminimalkan torsi eksternal.

Cara kerja giroskop yang berlandaskan pada prinsip operasi lain juga ada, misalnya giroskop MEMS perangkat elektronik yang ditemukan pada perangkat elektronik konsumen, cincin lasergiroskop optik serat, dan giroskop kuantum yang sangat sensitif.

Pendahuluan[sunting | sunting sumber]

Gyroscope wheel animation.gif

Berkas:STMicroelectronics Makes 3-Axis Digital Gyroscope With One Sensor.jpg

3-Axis Digital Gyroscope

Pada dasarnya, giroskop mekanik adalah roda berputar atau disk yang berporos bebas untuk mengambil setiap orientasi. Meskipun orientasi ini tidak tinggal tetap, perubahan dalam respon terhadap eksternal torsi jauh lebih sedikit dan dalam arah yang berbeda dari itu akan tanpa momentum sudut besar yang terkait dengan tingkat tinggi dari disk berputar dan momen inersia . Karena torsi eksternal diminimalkan dengan me-mount perangkat di gimbal, orientasi masih hampir tetap, terlepas dari setiap gerak dari platform yang sudah terpasang.

Giroskop berdasarkan prinsip-prinsip operasi lain juga ada, seperti, elektronik microchip-paket MEMS giroskop perangkat yang ditemukan dalam perangkat konsumen elektronik, solid-state laser cincin, giroskop serat optik, dan sangat sensitif giroskop kuantum . Aplikasi giroskop termasuk sistem navigasi inersia mana kompas magnetik tidak akan bekerja (seperti dalam teleskop Hubble ) atau tidak akan cukup tepat (seperti dalam ICBM ), atau untuk stabilisasi kendaraan terbang seperti radio-dikontrol helikopter atau kendaraan udara tak berawak . Karena presisi tinggi mereka, giroskop juga digunakan untuk menjaga arah dalam terowongan pertambangan.

Deskripsi

Diagram roda giro. Reaksi panah tentang sumbu output (biru) sesuai dengan kekuatan diterapkan terhadap sumbu masukan (hijau), dan sebaliknya.

Dalam sistem mekanis atau perangkat, sebuah giroskop konvensional adalah mekanisme yang terdiri dari rotor journal berputar sekitar satu sumbu, yang jurnal rotor yang dipasang di dalam gimbal cincin atau gimbal inner journal untuk osilasi dalam gimbal luar untuk total dua gimbal.

Gimbal outer atau cincin, yang merupakan bingkai giroskop, sudah terpasang sehingga poros sekitar sebuah sumbu dalam pesawat sendiri ditentukan oleh dukungan. Gimbal outer ini memiliki satu derajat kebebasan rotasi dan sumbu tidak memiliki. Gimbal inner adalah dipasang di frame giroskop (luar gimbal) sehingga poros sekitar sebuah sumbu dalam pesawat sendiri yang selalu tegak lurus terhadap sumbu penting dari frame giroskop (luar gimbal). Gimbal inner ini memiliki dua derajat kebebasan rotasi.

Poros dari roda berputar mendefinisikan sumbu putar. Rotor berputar journal tentang sumbu, yang selalu tegak lurus terhadap sumbu gimbal inner. Jadi rotor memiliki tiga derajat kebebasan rotasi dan sumbu memiliki dua. Roda menanggapi gaya yang diterapkan terhadap sumbu input oleh kekuatan reaksi tentang sumbu output.

Perilaku giroskop dapat mudah diketahui oleh pertimbangan roda depan sepeda. Jika roda bersandar jauh dari vertikal sehingga bagian atas roda bergerak ke kiri, pelek roda depan juga berubah ke kiri. Dengan kata lain, rotasi pada satu sumbu roda berputar menghasilkan rotasi sumbu ketiga.

Sebuah gyroscope flywheel akan roll atau menolak tentang sumbu keluaran tergantung pada apakah gimbal output yang bebas-atau tetap-konfigurasi. Contoh beberapa bebas-output-gimbal perangkat akan menjadi referensi sikap giroskop digunakan untuk merasakan atau mengukur lapangan, gulungan dan yaw sudut dalam pesawat ruang angkasa atau pesawat udara.

Pusat gravitasi dari rotor dapat berada dalam posisi tetap. Rotor berputar secara bersamaan sekitar satu sumbu dan mampu berosilasi tentang dua sumbu yang lain, dan dengan demikian, kecuali untuk resistensi inheren karena rotor berputar, ia bebas untuk mengubah ke segala arah di sekitar titik tetap. Beberapa giroskop telah setara mekanik diganti untuk satu atau lebih elemen. Sebagai contoh, rotor berputar dapat ditangguhkan dalam cairan, bukannya pivotally terpasang di gimbal. Sebuah control moment gyroscope (CMG) adalah contoh dari perangkat fixed-output-gimbal yang digunakan pada pesawat ruang angkasa untuk menahan atau mempertahankan sudut sikap yang diinginkan atau arah menunjuk menggunakan kekuatan resistensi gyroscopic. Dalam beberapa kasus khusus, gimbal outer (atau ekuivalen) dapat dihilangkan sehingga rotor hanya memiliki dua derajat kebebasan. Dalam kasus lain, pusat gravitasi dari rotor dapat offset dari sumbu osilasi, dan dengan demikian, pusat gravitasi dari rotor dan pusat suspensi rotor tidak mungkin bertepatan.

Sejarah

Giroskop ditemukan oleh Léon Foucault pada tahun 1852. Replica dibangun oleh Dumoulin-Froment untuk universelle Pameran di 1867. Konservatorium Nasional dan museum Seni Kerajinan, Paris. Yang dikenal paling awal giroskop-seperti instrumen dibuat oleh Jerman Johann Bohnenberger, yang pertama kali menulis tentang hal itu pada tahun 1817. Pada awalnya ia menyebutnya "Mesin". mesin Bohnenberger itu didasarkan pada lingkup besar berputar. Pada tahun 1832, Amerika Walter R. Johnson mengembangkan perangkat serupa yang didasarkan pada disk yang berputar. Para matematikawan Prancis Pierre-Simon Laplace, bekerja di École Polytechnique di Paris, direkomendasikan mesin untuk digunakan sebagai bantuan pengajaran, dan dengan demikian ia datang ke perhatian Léon Foucault . Pada tahun 1852, Foucault digunakan dalam sebuah eksperimen yang melibatkan rotasi bumi. Ini adalah Foucault yang memberikan perangkat nama modern, dalam sebuah percobaan untuk melihat (skopeein Yunani, untuk melihat) rotasi bumi (gyros Yunani, lingkaran atau rotasi ), yang terlihat di 8 sampai 10 menit sebelum gesekan memperlambat rotor berputar.

Pada 1860-an, munculnya motor listrik memungkinkan untuk giroskop untuk berputar selamanya, hal ini menyebabkan prototipe pertama gyrocompasses . Laut fungsional pertama gyrocompass telah dipatenkan pada tahun 1904 oleh penemu Jerman Hermann Anschütz-Kaempfe . Amerika Elmer Sperry diikuti dengan desain sendiri akhir tahun, dan negara-negara lain segera menyadari pentingnya militer dari penemuan-dalam suatu masa di mana kecakapan angkatan laut adalah ukuran yang paling signifikan dari kekuasaan militer-dan menciptakan industri mereka sendiri giroskop. Para Perusahaan giroskop Sperry cepat diperluas untuk menyediakan pesawat dan stabilisator angkatan laut juga, dan pengembang giroskop lain mengikuti.

Pada tahun 1917, Perusahaan Chandler dari Indianapolis, menciptakan "giroskop Chandler", sebuah giroskop mainan dengan string menarik dan alas. Chandler terus memproduksi mainan sampai perusahaan ini dibeli oleh TEDCO inc. pada tahun 1982. Mainan Chandler masih diproduksi oleh TEDCO hari ini.

Pada beberapa dekade pertama abad ke-20, penemu lainnya berusaha (gagal) untuk menggunakan giroskop sebagai dasar untuk awal kotak hitam sistem navigasi dengan menciptakan sebuah platform yang stabil dari mana pengukuran percepatan akurat dapat dilakukan (dalam rangka untuk memotong kebutuhan untuk bintang penampakan untuk menghitung posisi). Prinsip yang sama kemudian digunakan dalam pengembangan sistem bimbingan inersia untuk rudal balistik .

Selama Perang Dunia II, giroskop menjadi komponen utama untuk pesawat-pesawat dan anti incaran. Giroskop juga sedang digunakan dalam perangkat elektronik portabel seperti generasi sekarang Apple iPad dan iPhone. Accelerometer menyediakan komponen penginderaan 6 gerak, mengukur tingkat dan kecepatan rotasi dalam ruang (roll, pitch dan yaw).

Properti

Sebuah giroskop beroperasi dengan kebebasan di semua tiga sumbu. Rotor akan mempertahankan arah spin porosnya terlepas dari orientasi dari frame luar.

Giroskop Sebuah pameran sejumlah perilaku termasuk presesi dan angguk kepala . Giroskop dapat digunakan untuk membangun gyrocompasses, yang melengkapi atau mengganti kompas magnetik (di kapal, pesawat terbang dan pesawat ruang angkasa, kendaraan pada umumnya), untuk membantu stabilitas ( Hubble Space Telescope, sepeda, sepeda motor, dan kapal) atau digunakan sebagai bagian dari bimbingan inersia sistem. Efek gyroscopic digunakan dalam puncak, bumerang, yo-Yos, dan Powerballs . Banyak perangkat berputar lainnya, seperti roda gaya, berperilaku dalam cara giroskop, meskipun efek gyroscopic tidak digunakan.

Persamaan mendasar yang menggambarkan perilaku giroskop adalah: dimana pseudovectors τ dan L adalah, masing-masing, torsi pada giroskop dan perusahaan momentum sudut, skalar I adalah yang momen inersia, yang ω vektor adalah kecepatan sudutnya, dan α vektor adalah percepatan sudutnya.

Maka dari ini bahwa torsi τ diterapkan tegak lurus terhadap sumbu rotasi, dan karena itu tegak lurus ke L, hasil dalam sebuah rotasi terhadap sumbu tegak lurus baik τ dan L. Gerakan ini disebut presesi . Kecepatan sudut presesi Ω P diberikan oleh perkalian silang:

Presesi pada giroskop

Presesi dapat ditunjukkan dengan menempatkan sebuah giroskop berputar dengan sumbu horizontal dan didukung longgar (gesekan terhadap presesi) pada salah satu ujungnya. Alih-alih jatuh, seperti yang mungkin diharapkan, giroskop muncul untuk menentang gravitasi dengan tersisa dengan sumbu horizontal, ketika ujung sumbu yang tersisa tidak didukung dan ujung bebas dari sumbu perlahan menggambarkan lingkaran pada bidang horizontal, yang dihasilkan presesi berputar. Efek ini dijelaskan oleh persamaan di atas. Torsi pada giroskop dipasok oleh beberapa kekuatan: gravitasi yang bekerja pada pusat ke bawah perangkat massa, dan gaya yang sama bertindak atas untuk mendukung salah satu ujung perangkat. Rotasi dihasilkan dari torsi ini tidak menurun, seperti bisa intuitif diharapkan, menyebabkan perangkat untuk jatuh, tetapi tegak lurus baik torsi gravitasi (horizontal dan tegak lurus sumbu rotasi) dan sumbu rotasi (horizontal dan keluar dari titik support), yaitu, tentang sumbu vertikal, menyebabkan perangkat untuk memutar perlahan tentang titik pendukung.

Berdasarkan besarnya torsi konstan τ, kecepatan dari presesi giroskop Ω P adalah berbanding terbalik dengan L, besarnya momentum sudutnya: di mana θ adalah sudut antara vektor P dan L Ω. Jadi, jika spin giroskop melambat (misalnya, akibat gesekan), mengurangi momentum sudutnya sehingga tingkat kenaikan presesi. Hal ini berlanjut sampai perangkat tidak dapat untuk memutar cukup cepat untuk mendukung beratnya sendiri, ketika berhenti precessing dan jatuh dukungan, terutama karena gesekan terhadap presesi penyebab lain presesi yang masuk menyebabkan jatuh.

Dengan konvensi, ketiga vektor - torsi, spin, dan presesi - semua berorientasi dengan menghormati satu sama lain menurut aturan tangan kanan .

Untuk mudah memastikan arah efek giro, hanya ingat bahwa roda bergulir cenderung, ketika bersandar ke samping, untuk mengubah ke arah yang ramping.

Variasi

Girostat

Sebuah girostat adalah varian dari giroskop. Ini terdiri dari roda flywheel besar tersembunyi dalam casing padat. Perilaku di atas meja, atau dengan berbagai modus suspensi atau dukungan, berfungsi untuk menggambarkan pembalikan penasaran hukum biasa kesetimbangan statis karena perilaku gyrostatic dari roda flywheel interior terlihat ketika diputar cepat. Yang girostat pertama dirancang oleh Lord Kelvin untuk menggambarkan keadaan yang lebih rumit dari gerak tubuh yang berputar ketika bebas untuk berkeliling pada bidang horisontal, seperti gasing berputar di trotoar, atau lingkaran atau sepeda di jalan.

MEMS

Sebuah MEMS giroskop mengambil ide dari Foucault pendulum dan menggunakan elemen bergetar, yang dikenal sebagai MEMS (Micro Electro-Mechanical System). Gyro berbasis MEMS awalnya dibuat praktis dan producible oleh Systron Donner Inertial (SDI). Hal ini, SDI adalah produsen besar MEMS giroskop.

FOG

Sebuah giroskop serat optik (FOG) adalah sebuah giroskop yang menggunakan interferensi cahaya untuk mendeteksi rotasi mekanik. Sensor adalah kumparan sebanyak 5 km dari serat optik. Pengembangan rendah-rugi single-mode serat optik pada awal tahun 1970 untuk industri telekomunikasi memungkinkan pengembangan Sagnac efek gyros serat optik.

VSG atau CVG

Sebuah fiber optic gyroscope (VSG), juga disebut coriolis vibratory gyroscope (CVG), menggunakan resonator yang terbuat dari paduan logam yang berbeda. Ini mengambil posisi antara akurasi rendah, rendah-biaya giroskop MEMS dan akurasi lebih tinggi dan lebih tinggi-biaya FOG. Parameter akurasi ditingkatkan dengan menggunakan bahan intrinsik rendah redaman, vacuumization resonator, dan elektronik digital untuk mengurangi drift bergantung pada temperatur dan ketidakstabilan sinyal kontrol.

High-Q Wine-Glass Resonators untuk sensor yang tepat seperti HRG atau CRG didasarkan pada Bryan "efek gelombang inersia". Mereka terbuat dari tinggi kemurnian kaca kuarsa atau dari single-kristal safir .

DTG

Sebuah dynamically tuned gyroscope (DTG) adalah sebuah rotor ditangguhkan oleh gabungan universal dengan pivot lentur. Kekakuan lentur semi independen dari tingkat spin. Namun, inersia dinamis (dari efek reaksi gyroscopic) dari gimbal menyediakan kekakuan pegas negatif sebanding dengan kuadrat dari kecepatan putaran (Howe dan Savet, 1964; Lawrence, 1998). Oleh karena itu, pada kecepatan tertentu, yang disebut kecepatan tuning, dua momen membatalkan satu sama lain, membebaskan dari torsi rotor, kondisi yang diperlukan untuk giroskop yang ideal.

London moment

Sebuah London moment giroskop bergantung pada kuantum mekanik fenomena, dimana berputar superkonduktor menghasilkan medan magnet yang sumbu garis sama persis dengan sumbu putar dari rotor gyroscopic. Sebuah magnetometer menentukan orientasi medan yang dihasilkan, yang interpolasi untuk menentukan sumbu rotasi. Giroskop jenis ini bisa sangat akurat dan stabil. Sebagai contoh, yang digunakan dalam Gravity Probe B percobaan mengukur perubahan dalam orientasi sumbu giroskop berputar untuk lebih dari 0,5 milliarcseconds (1,4 × 10 -7 derajat) selama satu tahun. Hal ini setara dengan pemisahan sudut lebar rambut manusia dilihat dari 32 kilometer (20 mil) jauhnya.

GP-B terdiri dari giro yang hampir-sempurna bola berputar massal terbuat dari kuarsa leburan, yang menyediakan dielektrik dukungan untuk lapisan tipis niobium superkonduktor material. Untuk menghilangkan gesekan ditemukan di bantalan konvensional, rotor perakitan berpusat oleh medan listrik dari enam elektrode. Setelah awal spin-up oleh jet helium yang membawa rotor ke 4.000 RPM, perumahan giroskop dipoles adalah dievakuasi ke vakum ultra tinggi untuk mengurangi drag pada rotor. Asalkan suspensi elektronik tetap bertenaga, ekstrem simetri rotasi, kurangnya gesekan, dan drag rendah akan memungkinkan momentum sudut dari rotor untuk tetap berputar selama sekitar 15.000 tahun.

Sebuah DC sensitif SQUID magnetometer mampu membedakan perubahan sebagai kecil sebagai satu kuantum, atau sekitar 2 × 10 -15 Wb, digunakan untuk memantau giroskop. Sebuah presesi, atau memiringkan, dalam orientasi rotor menyebabkan momen London medan magnet bergeser relatif terhadap perumahan. Bidang bergerak melewati sebuah superkonduktor lingkaran penarik tetap untuk perumahan, mendorong arus listrik kecil. Arus menghasilkan tegangan pada hambatan shunt, yang memutuskan untuk koordinat bola dengan mikroprosesor. Sistem ini dirancang untuk meminimalkan Lorentz torsi pada rotor.

Penggunaan

Selain digunakan dalam kompas, pesawat perangkat komputer, menunjuk, dll, giroskop telah diperkenalkan ke elektronik konsumen. Sejak giroskop memungkinkan perhitungan orientasi dan rotasi, desainer telah memasukkan mereka ke teknologi modern. Integrasi giroskop telah memungkinkan untuk pengakuan yang lebih akurat gerakan dalam ruang 3D dari accelerometer tunggal sebelumnya dalam sejumlah smartphone. Scott Steinberg, dikenal karena kritik pada teknologi baru dirilis, mengatakan bahwa penambahan baru dari giroskop di iPhone 4 dapat "benar-benar mendefinisikan kembali cara kita berinteraksi dengan aplikasi download". Nintendo telah terintegrasi giroskop ke dalam Wii konsol Wii Remote controller dengan sepotong tambahan hardware yang disebut " Wii MotionPlus ". Hal ini juga termasuk dalam 3DS, yang mendeteksi gerakan saat berputar.

Menggabungkan data accelerometer dan giroskop.

Langkah pertama dalam menggunakan sebuah perangkat yang menggabungkan kombinasi IMU accelerometer dan giroskop adalah untuk menyelaraskan mereka sistem koordinat. Cara termudah untuk melakukannya adalah untuk memilih sistem koordinat accelerometer sebagai sistem koordinat Anda referensi. Data accelerometer yang paling lembar akan menampilkan arah X, Y, Z sumbu relatif terhadap citra chip fisik atau perangkat. Sebagai contoh di sini adalah arah dari X, Y, Z sumbu seperti yang ditunjukkan dalam spesifikasi untuk Acc_Gyro papan:

Langkah berikutnya adalah:

  • Mengidentifikasi output giroskop yang sesuai dengan RateAxz, nilai-nilai RateAyz dibahas di atas.
  • Menentukan apakah output tersebut perlu dibalik karena posisi fisik giroskop relatif terhadap accelerometer.

Jangan berasumsi bahwa jika giroskop memiliki output ditandai X atau Y, itu akan sesuai dengan setiap sumbu dalam sistem koordinat accelerometer, bahkan jika output ini merupakan bagian dari unit IMU. Cara terbaik adalah untuk menguji itu. Berikut adalah urutan sampel untuk menentukan output dari giroskop sesuai dengan nilai RateAxz dibahas di atas.

  • Mulai dari menempatkan perangkat dalam posisi horisontal. Kedua X dan output Y dari accelerometer akan output tegangan nol-g (misalnya untuk Acc_Gyro board ini 1.65V)
  • Awal berikutnya perangkat berputar di sekitar sumbu Y, cara lain untuk mengatakan itu adalah bahwa Anda memutar perangkat di pesawat XZ, sehingga X dan Z accelerometer perubahan output dan output Y tetap konstan.
  • Sementara memutar perangkat pada catatan kecepatan konstan yang giroskop perubahan output, output giroskop lain harus tetap konstan
  • Output giroskop yang berubah selama rotasi di sekitar sumbu Y (rotasi di pesawat XZ) akan memberikan nilai masukan untuk AdcGyroXZ, dari mana kita menghitung RateAxz
  • Langkah terakhir adalah untuk memastikan arah rotasi sesuai dengan model kami, dalam beberapa kasus, Anda mungkin harus membalikkan nilai RateAxz karena posisi fisik giroskop relatif terhadap accelerometer
  • Tampil lagi tes di atas, memutar perangkat di sekitar sumbu Y, kali ini memantau output X dari accelerometer (AdcRx dalam model kita). Jika AdcRx tumbuh (yang pertama 90 derajat rotasi dari posisi horisontal), maka AdcGyroXZ harus menurun. Hal ini disebabkan kenyataan bahwa kita sedang memantau vektor gravitasi dan bila perangkat berputar di satu arah vektor akan memutar dalam arah yang berlawanan (relatif terhadap sistem coordonate perangkat, yang kita gunakan).

Sumber Artikel : Wikipedia

Selengkapnya
Giroskop
« First Previous page 749 of 1.170 Next Last »