Teknik Elektro dan Informatika
Dipublikasikan oleh Dewi Sulistiowati pada 28 Februari 2025
Apa yang dimaksud dengan sistem kontrol?
Sistem kontrol adalah seperangkat perangkat mekanis atau elektronik yang mengatur perangkat atau sistem lain melalui loop kontrol. Biasanya, sistem kontrol terkomputerisasi.
Sistem kontrol adalah bagian penting dari produksi dan distribusi di banyak industri. Teknologi otomasi memainkan peran besar dalam sistem ini. Jenis-jenis loop kontrol yang mengatur proses ini termasuk sistem kontrol industri, seperti kontrol pengawasan dan akuisisi data, sistem, dan sistem kontrol terdistribusi.
Bagaimana sistem kontrol digunakan?
Sistem kontrol digunakan untuk meningkatkan produksi, efisiensi, dan keamanan di banyak industri:
Berikut ini adalah contoh spesifik di mana sistem kontrol digunakan dalam proses industri:
Apa saja jenis utama sistem kontrol?
Ada dua jenis sistem kontrol yang umum digunakan: sistem loop terbuka dan loop tertutup.
Loop terbuka
Sistem kontrol ini beroperasi dengan input manusia. Tindakan kontrol tidak bergantung pada output. Dalam penggunaan rumah tangga, mesin cuci adalah contoh sistem loop terbuka karena seseorang perlu membuat pilihan di antara pengaturan untuk menjalankannya. Sistem lampu lalu lintas berbasis waktu adalah contoh industri dari sistem kontrol loop terbuka, di mana insinyur lalu lintas harus menentukan waktu untuk lampu berhenti, jalan, dan lampu peringatan.
Loop tertutup
Sistem ini dapat dikelola secara aktif atau diatur untuk beroperasi secara mandiri. Sistem ini menggunakan sinyal umpan balik dari sistem untuk memberikan kontrol otomatis dan mempertahankan pengaturan tertentu atau kondisi yang diinginkan tanpa campur tangan manusia. Beberapa loop kontrol dapat dialihkan antara mode tertutup dan terbuka. Saat terbuka, loop yang dapat dialihkan dikontrol secara manual; saat tertutup, loop ini dapat sepenuhnya otomatis.
Termostat adalah contoh sistem loop tertutup. Termostat menyalakan dan mematikan sistem pemanas berdasarkan sinyal yang diterima dari sensor yang memantau suhu udara. Kontrol suhu adalah bagian yang sangat penting dalam menjaga lingkungan pusat data yang tepat.
Terdiri dari apakah sistem kontrol itu?
Loop kontrol yang membentuk keseluruhan sistem umumnya mencakup sensor, pengontrol, dan elemen kontrol akhir. Sensor membaca variabel proses atau pengukuran kontrol proses terkait. Pengontrol menerima sinyal dari sensor dan meneruskannya ke instrumentasi, unit terminal jarak jauh, dan elemen kontrol akhir. Di sana, variabel proses disesuaikan agar tetap konstan pada titik setel yang dipilih.
Komponen lain dalam modul loop kontrol termasuk pengontrol logika yang dapat diprogram, pengontrol otomasi yang dapat diprogram, unit terminal jarak jauh, server kontrol, dan perangkat elektronik cerdas.
Apa saja kelebihan dan kekurangan sistem kontrol?
Sistem kontrol loop tertutup banyak digunakan dalam banyak aplikasi. Sistem ini efektif dalam mengendalikan perangkat yang terletak di luar, menyediakan data keluaran yang dapat diandalkan dan siap tersedia, serta tahan terhadap gangguan eksternal.
Namun, sistem kontrol sangat kompleks, dan memerlukan pelatihan dan dokumentasi untuk pengoperasian yang optimal dan untuk mencapai output yang diinginkan. Kerusakan pada sensor jarak jauh dapat memberikan data yang tidak akurat tentang kinerja sistem, yang mungkin mengakibatkan perubahan sistem yang tidak perlu. Kompleksitasnya juga berarti bahwa sensor ini belum tentu siap digunakan langsung dari kemasannya dan mungkin memerlukan pemrograman dan aktivitas prapeluncuran lainnya sebelum digunakan.
Pelajari tentang bagaimana perusahaan minyak, energi, dan kimia mengganti sistem kontrol yang mahal dengan sistem yang lebih murah dan lebih aman.
Disadur dari: https://www.techtarget.com/
Teknik Elektro dan Informatika
Dipublikasikan oleh Dewi Sulistiowati pada 28 Februari 2025
Supervisory control and data acquisition merupakan sistem kendali industri berbasis komputer yang melakukan kontrol untuk industri, infrastruktur, dan proses fasilitas. Sistem supervisory control and data acquisition biasanya digunakan oleh industri yang membutuhkan industrial control system.
Meskipun tidak semua industri membutuhkan sistem ini, namun ada banyak sekali contoh industri yang menggunakan industrial control system dari supervisory control and data acquisition dan produknya kita gunakan sehari-hari. Namun, apakah yang dimaksud dengan supervisory control and data acquisition?
Berikut adalah pengertian supervisory control and data acquisition!
Pengertian supervisory control and data acquisition (SCADA)
Supervisory control and data acquisition merupakan suatu sistem yang dapat mengumpulkan informasi dari perangkat di lapangan yang berasal dari sensor-sensor, kemudian dikirimkan ke pusat kendali untuk dilakukan pengendalian dan pengolahan data.
Salah satu jenis sistem kontrol industri yang paling umum digunakan, supervisory control and data acquisition dapat digunakan untuk mengelola hampir semua jenis proses industri. Sistem supervisory control and data acquisition juga mencatat dan mencatat semua peristiwa untuk melaporkan status dan masalah proses. Aplikasi supervisory control and data acquisition memperingatkan saat kondisi menjadi berbahaya dengan membunyikan alarm.
Contoh industri yang menggunakan SCADA Berikut ini adalah beberapa contohnya, yaitu:
Bidang industrial process, terdiri dari:
Bidang infrastructure process, terdiri dari:
Bidang facilities process, terdiri dari:
Sumber: https://www.kompas.com/
Teknik Elektro dan Informatika
Dipublikasikan oleh Dewi Sulistiowati pada 28 Februari 2025
Sistem kontrol robot telah mengalami revolusi signifikan akibat cara manusia berinteraksi dengan mesin dalam berbagai bidang. Melihat hal tersebut, Guru Besar (Gubes) Institut Teknologi Sepuluh Nopember (ITS), Prof Dr Trihastuti Agustinah ST MT, terdorong untuk menjalani sebuah kajian mendalam mengenai cara mengoptimalkan sistem kontrol robot transpor.
Perempuan yang akrab dipanggil Tuti ini mengungkapkan, hasil pemikiran dan penelitiannya ini tertuang dalam orasi ilmiah berjudul Sistem Kontrol Robotik: Tantangan dan Peluang. Kontrol robotik, mirip dengan otak yang membantu robot membuat keputusan, menentukan pergerakan, dan beradaptasi dengan kompleksitas kebutuhan manusia yang terus meningkat.
Tuti menjelaskan, ia memilih sistem kontrol robotik sebagai fokus penelitiannya karena potensinya yang amat menguntungkan dalam membangun masa depan manusia. Sistem kontrol robotik, selaku otak dari robot, dapat menunjang berbagai kebutuhan hidup manusia. “Mulai dari mengembangkan industri manufaktur, perawatan kesehatan, tugas rumah sehari-hari, hingga eksplorasi luar angkasa,” terangnya.
Sebagai contoh, Tuti melakukan penelitian kepada robot transpor, seperti quadrotor atau robot terbang dan mobile robot. Kedua robot yang biasanya dimanfaatkan untuk logistik tersebut memerlukan sistem kontrol robotik yang cakap untuk mempertahankan dan menentukan stabilitas, pelacakan, serta metode penghindaran rintangan. “Hal ini penting karena ketiganya merupakan unsur utama mobilisasi kedua robot,” ucapnya.

Guru Besar (Gubes) ITS ke-165 Prof Dr Trihastuti Agustinah ST MT menunjukkan skema mobile robot ketika uji coba metode penghindaran
Gubes ke-165 ITS itu telah melakukan kajian yang mendalam terhadap strategi pengendalian sistem robot dengan penekanan yang kuat pada aspek stabilitas dan akurasi pelacakan. Selain itu, ia juga telah berupaya untuk mengidentifikasi metode yang efektif dalam melindungi robot dari kemungkinan hambatan yang dapat muncul.
Secara khusus, pada robot quadrotor, Tuti menerapkan metode H-infinity output feedback dan Command Generator Tracker (CGT). Lebih dalam, H-infinity output feedback untuk membantu mengendalikan sistem robot agar tetap stabil dan responsif terhadap perubahan, sehingga robot dapat meminimalkan gangguan yang akan diterima. Selain itu, metode ini juga dipilih karena sifatnya yang fleksibel, sederhana, dan memiliki desain yang sangat efisien.

Metode penghindaran mobile robot ketika hendak disimulasikan di lingkungan manusia
Lain halnya dengan CGT yang berperan untuk mengoptimalkan fungsi tracking pada robot. Berdasarkan penelitian, CGT nantinya akan memandu robot menemukan keberadaan sinyal informasi. “Setelah itu, CGT akan memberi arahan kepada robot untuk melacak keberadaan sinyal dan pergerakan selanjutnya,” tambah perempuan asal Pamekasan ini.
Dalam penelitian berikutnya yang digeluti oleh Tuti, ia mengkaji bagaimana robot transpor dapat bergerak tanpa mengancam keselamatan manusia melalui penggunaan mobile robot. Mobile robot sendiri merupakan jenis robot yang mampu berpindah tempat di lingkungan manusia. “Dengan itu, digunakan metode Hybrid Velocity Obstacles (HVO) berbasis Headed Social Force Model (HSFM),” jelasnya.
Meskipun sudah menemukan pendekatan dan metode yang tepat, profesor dengan fokus ilmu bidang robotika tersebut membeberkan penerapan sistem kontrol robot ini masih dalam pengembangan. Ia dan grup risetnya masih perlu mengoptimalkan berbagai aspek agar fungsi logistik robot dapat maksimal ketika beroperasi bagi manusia.
Dengan demikian, penelitian Tuti diharapkan dapat memberikan kontribusi yang berarti dalam pengembangan robot yang aman dan efisien dalam berinteraksi dengan manusia. Terkhusus, optimalisasi sistem kontrol robotik di bidang logistik yang dapat terealisasi dengan maksimal. “Hadirnya inovasi kontrol robot dapat segera direalisasikan guna memberi kebermanfaatan kepada masyarakat,” pungkasnya bangga.
Sumber: https://www.its.ac.id/
Teknik Elektro dan Informatika
Dipublikasikan oleh Dewi Sulistiowati pada 28 Februari 2025
Sistem kontrol digunakan dalam berbagai aplikasi dan merupakan bagian penting dari banyak perangkat dan sistem modern. Secara sederhana, sistem Kontrol digunakan untuk mengontrol perilaku perangkat atau proses apa pun.
Pada artikel kali ini kita akan membahas topik Sistem Kendali. Kami akan membahas dasar-dasar Sistem Pengendalian, perbedaan klasifikasi Sistem Pengendalian, serta berbagai jenis Sistem Pengendalian. Kami juga akan menjelaskan perbedaan antara Sistem Loop Terbuka dan Sistem Loop Tertutup. Terakhir, kami akan menutup artikel kami dengan memberikan informasi tentang Kelebihan dan Kekurangan Sistem Kontrol, Aplikasinya, dan beberapa pertanyaan umum.
Apa itu sistem kontrol?
Sistem Kontrol adalah suatu sistem atau sekumpulan perangkat yang mengatur perintah dan mengarahkan perilaku perangkat atau sistem lain. Ia bekerja berdasarkan prinsip siklus input-proses-output. karena output dikendalikan oleh input yang bervariasi. Mereka banyak digunakan dalam elektronik, otomasi, dan teknik.
Ini terutama terdiri dari tiga komponen : sensor, pengontrol, dan aktuator . Di sini sensor merasakan karakteristik fisik seperti tekanan, dan suhu dan mengubahnya menjadi sinyal listrik dan menghasilkan sinyal keluaran yang digunakan untuk mengontrol aktuator.
Diagram blok Sistem Kendali
Contoh sistem kontrol
Sistem kendali memiliki berbagai contoh dan banyak digunakan dalam aplikasi sehari-hari. Beberapa contoh tercantum di bawah ini:
Klasifikasi sistem kontrol
Sistem kendali diklasifikasikan seperti yang disebutkan di bawah ini dengan menggunakan beberapa parameter yang sesuai:
Sistem kendali dapat diklasifikasikan berdasarkan jenis sinyal yang kita gunakan dan operasikan
Sistem pengendalian dapat diklasifikasikan berdasarkan jumlah Input dan Output yang ada
Sistem pengendalian dapat diklasifikasikan berdasarkan jalur umpan balik
Jenis sistem kontrol
Pada dasarnya ada dua jenis sistem kendali:
Sistem kontrol loop terbuka
Dalam sistem kendali loop terbuka, sinyal kendali yang dianggap masukan dikirim ke sistem (Sumber), dan sistem merespons tanpa mempertimbangkan keluaran. Kekurangan sistem ini adalah tidak memantau perilaku sistem secara terus menerus. Diagram blok untuk sistem ini ditunjukkan di bawah ini.
Sistem Kontrol Loop Terbuka
Contoh sistem kendali loop terbuka adalah:
Sistem kontrol loop tertutup
Dalam sistem kontrol loop tertutup, sensor digunakan untuk memberikan kinerja sistem dan kemudian menyesuaikan input kontrol. Sistem ini disebut juga sistem kendali umpan balik. dibandingkan dengan OLCS, ia terus memantau keluaran dan membuat beberapa perubahan berdasarkan perbedaan antara keluaran yang diinginkan dan keluaran aktual.
Sistem Kontrol Loop Tertutup
Contoh sistem kendali loop tertutup adalah:
Perbedaan Antara Sistem Kendali Loop Terbuka dan Loop Tertutup
Berikut adalah beberapa perbedaan utama antara Sistem Kontrol Loop Terbuka dan Loop Tertutup:
Sistem Kontrol Loop Terbuka:
Sistem Kontrol Loop Tertutup:
Fitur sistem kontrol
Beberapa fitur utama Sistem Kontrol adalah:
Sistem kontrol tertanam
Kita semua mengetahui sistem Tertanam, Ini terdiri dari kombinasi dukungan perangkat keras dan perangkat lunak yang dirancang untuk tujuan atau tugas tertentu yang disebut sistem Tertanam, di sisi lain, sistem yang tertanam ke dalam sistem yang kompleks untuk mengontrol aktivitas, melacak status, dan memantau hasilnya dengan fungsionalitas perangkat keras dan perangkat lunak disebut sistem kontrol tertanam.
Contoh : Pemantauan pasien dalam administrasi kesehatan, Mengatur dan mengendalikan kecepatan kendaraan di industri otomotif dan sebagainya.
Aplikasi seperti industri Otomotif, sistem Pertahanan, Peralatan Medis dan proses Industri, dll.
Kelebihan dan kekurangan sistem kendali
Ada beberapa daftar Keuntungan dan Kerugian Sistem Kontrol yang diberikan di bawah ini:
Keuntungan sistem kontrol:
Kekurangan sistem kontrol:
Penerapan sistem kontrol
Beberapa Aplikasi Sistem Kontrol adalah:
Kesimpulan
Dengan baik! Sistem kendali seperti yang kita miliki saat ini mempunyai berbagai macam aplikasi dan kegunaan. Dalam industri, sistem kendali digunakan untuk menunjang produksi dan memfungsikan mesin. kita dapat menggunakan berbagai jenis sistem kendali berdasarkan tujuan dan kebutuhan individu yang berbeda untuk memenuhi persyaratan.
Ruang lingkup sistem kendali mempunyai akar yang luas mulai dari peralatan rumah tangga hingga industri. Pada artikel ini kami telah membahas dasar-dasar sistem kontrol dan jenisnya, kelebihan dan kekurangannya, serta fitur-fiturnya secara mendetail.
Sistem kontrol – FAQ
Apa yang dimaksud dengan sistem kendali pada suatu rangkaian?
Sistem kendali dalam suatu rangkaian adalah suatu sistem yang mengatur atau mengatur perilaku komponen lain dalam rangkaian untuk mencapai keluaran atau kinerja yang diinginkan.
Sebutkan 4 bagian sistem kendali?
Empat komponen utama sistem kendali adalah sensor (atau perangkat pengukuran), pengontrol, aktuator (atau elemen kendali akhir), dan putaran umpan balik.
Apa saja contoh sistem kendali dalam kehidupan kita sehari-hari?
Beberapa Contoh Sistem Pengendalian dalam Kehidupan Sehari-hari adalah elevator, mesin kopi pintar, sistem keamanan dan otomasi rumah, dan sistem kendali lampu lalu lintas.
Bagaimana sistem pengendalian diklasifikasikan?
Sistem Kontrol Diklasifikasikan berdasarkan Jenis Sinyal Yaitu Sinyal Kontinu dan Diskrit, Berdasarkan Jumlah Input dan Output yaitu SISO dan MIMO dan juga diklasifikasikan berdasarkan Jalur Umpan Balik yaitu sistem Open-loop dan Closed-loop.
Apa saja jenis-jenis pengendalian dalam sistem?
Sistem kendali dikategorikan menjadi kendali loop terbuka dan loop tertutup (umpan balik).
Disadur dari: https://www.geeksforgeeks.org/
Teknik Lingkungan
Dipublikasikan oleh Anjas Mifta Huda pada 28 Februari 2025
Perubahan iklim merupakan salah satu ancaman terbesar yang dihadapi dunia pada abad ke-21. Hal ini juga telah diidentifikasi sebagai ancaman terhadap keamanan global oleh organisasi seperti Departemen Pertahanan AS . Selain dampaknya terhadap lingkungan, perubahan iklim juga dapat meningkatkan katalis konflik dan ketidakstabilan dengan memberikan tekanan pada sumber daya pangan dan air, mendorong migrasi lintas batas negara, dan meningkatkan frekuensi bencana nasional. Meningkatnya fokus pada titik temu antara perubahan iklim dan keamanan global memerlukan analisis khusus mengenai bagaimana dampak iklim dapat berkontribusi, secara langsung atau tidak langsung, terhadap tantangan keamanan global tertentu. Radikalisasi, yang dalam artikel ini akan didefinisikan sebagai proses di mana individu mengadopsi ideologi ekstremis berkekerasan, merupakan salah satu tantangan keamanan yang mungkin terkena dampak secara tidak langsung oleh perubahan iklim. Potensi hubungan antara perubahan iklim dan radikalisasi dengan ekstremisme kekerasan dapat dipelajari di Indonesia, sebuah negara yang rentan terhadap dampak perubahan iklim dan memiliki sejarah ekstremisme kekerasan .
Ekstremisme di Indonesia
Ancaman ekstremisme utama di Indonesia berasal dari kelompok ekstremis Islam, yang berupaya menggunakan kekerasan untuk menggantikan sistem politik Indonesia yang demokratis dan pluralis dengan rezim Islam fundamentalis. Islam Indonesia memiliki tradisi toleransi dan pluralitas, yang dibentuk oleh penyebarannya secara bertahap melalui perdagangan, pertukaran budaya, dan konversi, serta keragaman agama dan budaya di Indonesia. Namun, penafsiran Islam yang lebih fundamentalis mulai mengakar di Indonesia pada abad ke-20, ketika pelajar Indonesia yang kembali dari sekolah Islam di Dunia Arab membawa kembali penafsiran Islam yang lebih konservatif. Masuknya penafsiran Islam yang lebih fundamentalis ke Indonesia menciptakan bentrokan antara pihak yang berupaya melestarikan versi Islam Indonesia yang lebih toleran dan pihak yang mendukung penafsiran Islam yang lebih konservatif. Ketika Indonesia memperoleh kemerdekaan setelah Perang Dunia II, kelompok ekstremis Islam Darul Islam melancarkan pemberontakan melawan pemerintah sekuler dalam upaya untuk menciptakan kekhalifahan Islam. Meskipun kelompok-kelompok ekstremis ditindas di bawah kediktatoran Sukarto dan Suharno, penafsiran Islam yang lebih konservatif terus menyebar ketika negara-negara Arab—khususnya Arab Saudi— mendorong penafsiran Islam yang lebih fundamentalis melalui pembangunan masjid, sekolah, dan badan amal. Setelah transisi Indonesia menuju demokrasi pada tahun 1998, para ekstremis dari luar negeri dapat kembali ke negara tersebut, mengorganisir kelompok, dan melakukan serangan pada awal tahun 2000an.
Saat ini, terdapat sejumlah kelompok ekstremis yang beroperasi di Indonesia seperti Jemaah Islamiyah (JI), Jamaah Ansharut Daulah (JAD), dan Negara Islam Indonesia (NII). Pada masa puncak ancaman ekstremisme di Indonesia pada awal tahun 2000an, JI merupakan kelompok terbesar dan paling terorganisir, melakukan beberapa serangan besar—yang paling mematikan adalah Bom Bali tahun 2002. Saat ini tidak ada kelompok ekstremis di Indonesia yang memiliki sumber daya dan organisasi sebaik JI pada tahun 2000an, berkat peningkatan upaya pemberantasan terorisme. Namun, serangan sesekali memang terjadi, yang menunjukkan masih adanya ancaman ekstremisme dan radikalisasi di Indonesia.
Perubahan iklim dan faktor sosial ekonomi di balik radikalisasi
Salah satu dampak perubahan iklim terhadap radikalisasi di Indonesia adalah dengan semakin intensifnya faktor sosial ekonomi di balik radikalisasi seperti kemiskinan, pengangguran, dan kerawanan pangan. Sebagai negara kepulauan yang berada di sisi Pasifik dari sistem El Niño, Indonesia sangat rentan terhadap perubahan lingkungan seperti kenaikan suhu rata-rata, kenaikan permukaan laut, kekeringan, dan bencana alam yang lebih sering terjadi. Dampak iklim ini dapat mengganggu sektor-sektor inti perekonomian Indonesia, khususnya di daerah pedesaan. Meningkatnya suhu, misalnya, dapat mempersulit pertanian—khususnya penanaman padi . Perairan yang lebih hangat juga dapat mengancam kehidupan laut, mengurangi stok ikan dan mematikan terumbu karang yang menjadi andalan banyak penduduk pedesaan di Indonesia untuk mencari ikan dan pendapatan dari pariwisata.
Meningkatnya frekuensi dan tingkat keparahan kekeringan dapat mempersulit pertanian karena memperpendek musim tanam, sehingga mengancam budidaya tanaman yang memerlukan banyak air seperti padi. Kenaikan permukaan air laut juga dapat mengganggu sektor perekonomian Indonesia karena salinitas akuifer pesisir dan membanjiri lahan pertanian dan kolam pemancingan di dekat pantai, sehingga mengurangi hasil pertanian dan perikanan. Apalagi, Indonesia merupakan negara dengan wilayah daratan paling besar yang berisiko terhadap kenaikan permukaan air laut. Dengan 60 persen —lebih dari 165 juta orang—penduduk Indonesia tinggal di wilayah pesisir, kenaikan permukaan air laut mengancam sebagian besar penduduk Indonesia dengan banjir dan genangan di wilayah pesisir. Terakhir, peningkatan frekuensi bencana alam seperti angin topan yang lebih dahsyat atau banjir akibat curah hujan ekstrem dapat menyebabkan kerusakan ekonomi, khususnya di daerah pedesaan dengan infrastruktur ketahanan iklim yang terbatas.
Gangguan yang disebabkan oleh perubahan iklim terhadap industri-industri penting di Indonesia seperti pertanian, perikanan, dan pariwisata dapat memicu pengangguran dan memperparah kemiskinan di daerah pedesaan, yang paling bergantung pada industri-industri tersebut. Beberapa penelitian menunjukkan bahwa perubahan iklim dapat mengurangi nilai total produksi padi irigasi di Indonesia—produk pertanian utama negara ini—sebesar 20 persen pada tahun 2050, sehingga menimbulkan risiko ekonomi yang signifikan bagi para petani. Meningkatnya kemiskinan dan pengangguran di daerah pedesaan dapat mempercepat migrasi ke kota-kota di Indonesia, sehingga mengakibatkan peningkatan kemiskinan perkotaan dan bertambahnya jumlah penduduk miskin perkotaan jika kesempatan kerja tidak mampu mengimbangi kedatangan para migran. Selain itu, gangguan terhadap pertanian dan perikanan berpotensi meningkatkan harga pangan di seluruh negeri, terutama selama periode kekeringan parah, yang mengakibatkan kerawanan pangan dan meningkatkan paparan kemiskinan baik di wilayah pedesaan maupun perkotaan. Ketergantungan masyarakat Indonesia pada makanan pokok yang rentan terhadap perubahan iklim seperti makanan laut dan beras memperbesar risiko kerawanan pangan, dengan makanan laut merupakan lebih dari separuh protein hewani dalam makanan orang Indonesia dan konsumsi beras per kapita sebesar 150kg (330 pon) per orang pada tahun 2017. Terakhir, perubahan iklim Perubahan ini mengancam peningkatan ketimpangan kekayaan karena 26 juta penduduk Indonesia yang hidup dalam kemiskinan, serta mereka yang berada di dekat garis kemiskinan, memiliki kemampuan paling terbatas untuk beradaptasi terhadap dampak iklim seperti kenaikan permukaan air laut atau bencana alam.
Tren-tren ini dapat menciptakan populasi individu yang rentan terhadap radikalisasi. Kemiskinan yang semakin meningkat atau semakin mengakar, misalnya, dapat meningkatkan kemungkinan radikalisasi di Indonesia karena penelitian menunjukkan adanya hubungan antara tingkat pendapatan yang lebih rendah dan kemungkinan kepatuhan terhadap ideologi radikal. Pengangguran , khususnya di kalangan laki-laki muda, juga dapat meningkatkan kemungkinan radikalisasi dengan menciptakan keluhan yang membuat individu lebih cenderung melakukan tindakan kekerasan atau mengadopsi ideologi ekstremis. Selain itu, meningkatnya kemiskinan perkotaan—akibat percepatan migrasi dan kenaikan harga pangan—dapat menjadi faktor yang meningkatkan kemungkinan terjadinya radikalisasi . Meningkatnya kesenjangan kekayaan juga bisa menjadi faktor yang meningkatkan risiko radikalisasi karena masyarakat miskin Indonesia mungkin beralih ke ideologi ekstremis sebagai cara untuk menutupi kekurangan harta benda.
Perubahan iklim dan faktor politik di balik radikalisasi
Selain memperkuat faktor sosial ekonomi di balik radikalisasi di Indonesia, perubahan iklim juga dapat menciptakan kondisi politik yang meningkatkan risiko radikalisasi. Perubahan iklim, misalnya, dapat menciptakan periode pemerintahan yang lemah setelah terjadinya bencana alam yang lebih sering dan hebat seperti angin topan atau banjir. Tata kelola yang lemah di beberapa wilayah di negara ini akan memudahkan kelompok ekstremis untuk beroperasi dan merekrut pengikut. Kelompok juga bisa mendapatkan pendukung dengan memberikan upaya kemanusiaan dan amal. Beberapa kelompok ekstremis di Indonesia telah memberikan layanan amal kepada anggotanya dan keluarga mereka, dan mungkin akan beralih memberikan bantuan ketika bencana alam semakin sering terjadi.
Ketidaknyamanan umum akibat dampak iklim juga dapat meningkatkan ketidakpuasan terhadap pemerintah. Krisis pangan yang dipicu oleh peristiwa perubahan iklim yang besar, misalnya, dapat mengurangi kepercayaan masyarakat Indonesia terhadap pemerintah jika lembaga-lembaga tersebut gagal mengatasi kenaikan harga atau kerawanan pangan. Demikian pula, dampak perubahan iklim lainnya seperti banjir atau angin topan dapat meningkatkan ketidakpuasan masyarakat yang terkena dampak terhadap pemerintah karena kebijakan mengenai isu-isu seperti perekonomian dan pengentasan kemiskinan tampak tidak efektif. Penelitian di Indonesia menunjukkan bahwa ketidakpuasan terhadap pemerintah dapat membuat individu lebih cenderung menerima ideologi ekstremis dan membuat mereka lebih bersedia mendukung perombakan sistem pemerintahan saat ini—seperti rezim Islam fundamentalis.
Terdapat preseden mengenai isu lingkungan yang menciptakan kondisi politik yang mendukung radikalisasi di Indonesia. Selama tahun 1997 dan 1998, negara ini dilanda kekeringan yang luar biasa parah akibat pola El Niño yang sangat kuat. Kekeringan menyebabkan krisis pangan, dan menambah penderitaan ekonomi akibat krisis keuangan Asia tahun 1997. Krisis pangan dan penderitaan ekonomi menyebabkan ketidakpuasan yang parah terhadap pemerintah, dengan protes besar-besaran yang mengakibatkan pergantian rezim yang menggantikan rezim otoriter Suharno dengan pemerintahan yang demokratis, meskipun lemah. Lemahnya pemerintahan dan ketidakstabilan politik akibat transisi memungkinkan JI untuk bertindak berdasarkan ideologinya dengan merekrut pengikut dan merencanakan serangan, yang kemudian berujung pada serangan besar pada tahun 2000an.
Kesimpulan
Perubahan iklim dapat mempengaruhi faktor sosial ekonomi dan politik di balik radikalisasi. Di Indonesia, perubahan iklim berisiko memperparah kemiskinan dan pengangguran serta menciptakan periode ketidakstabilan politik dan lemahnya pemerintahan, sehingga berkontribusi terhadap risiko radikalisasi serta faktor-faktor di tingkat individu yang mendorong radikalisasi.
Namun, penting untuk dicatat bahwa radikalisasi adalah masalah yang sangat kompleks dan terdapat beragam faktor, baik di tingkat masyarakat maupun individu, yang dapat berkontribusi terhadap radikalisasi, banyak di antaranya tidak dibahas dalam artikel ini dan tidak dibahas dalam artikel ini. terkait dengan perubahan iklim. Penting juga untuk dicatat bahwa radikalisasi berbeda dari terorisme—seperti yang didefinisikan sebelumnya, radikalisasi dalam artikel ini berarti mengadopsi ideologi ekstremis dan bukan melakukan tindakan terorisme. Daripada berargumentasi bahwa perubahan iklim saja berkontribusi terhadap atau bahkan menyebabkan radikalisasi dan terorisme, perubahan iklim harus dilihat sebagai faktor yang akan berkontribusi terhadap peningkatan risiko radikalisasi, terutama ketika dampaknya menjadi lebih jelas.
Oleh karena itu, perubahan iklim merupakan fenomena penting untuk dipertimbangkan dalam upaya pemberantasan terorisme global. Strategi iklim yang efektif dapat mendorong deradikalisasi dengan melawan faktor sosial, ekonomi, dan politik yang dapat mendorong radikalisasi. Peningkatan radikalisasi menciptakan lebih banyak kelompok ekstremis untuk direkrut dan dapat meningkatkan risiko aksi teroris. Pada akhirnya, upaya global untuk memerangi terorisme harus menambahkan analisis risiko lingkungan hidup ke dalam upaya melawan radikalisasi dan ekstremisme.
Sumber: hir-harvard-edu
Teknik Elektro dan Informatika
Dipublikasikan oleh Dewi Sulistiowati pada 28 Februari 2025
Control Loops adalah sistem yang diterapkan oleh para insinyur desain di berbagai aplikasi industri untuk mempertahankan proses variabel (PV) pada nilai yang diinginkan atau set-point (SP). Control loops penting untuk menjaga stabilitas sistem, dan untuk secara konsisten menghasilkan hasil yang diinginkan dari suatu proses.
Temperature Control Loops adalah salah satu contoh loop kontrol yang paling umum. Loop kontrol bekerja untuk menjaga suhu di rumah dan kantor kita. Loop ini juga digunakan untuk berbagai sistem perendaman dan pemanas industri. Loop kontrol suhu diatur sebagai berikut:
Semua sistem loop kontrol berisi serangkaian elemen terkoordinasi yang diperlukan untuk mencapai tujuan kontrol. Sistem loop kontrol tersedia dalam berbagai konfigurasi, tergantung pada jenis industri dan spesifikasi penggunaan. Namun, semuanya mengikuti prinsip desain yang serupa.

Temperature Control Loops
Komponen utama control loops
Control Loops pada dasarnya adalah loop umpan balik karena melibatkan deteksi kesalahan dan penerapan koreksi umpan balik. Proses ini dicapai dengan menghubungkan berbagai komponen perangkat keras dalam suatu rangkaian. Hal ini melibatkan urutan pembuatan atau sistem yang melibatkan satu variabel atau beberapa variabel yang akan dikontrol.
Komponen-komponen dalam loop kontrol tertutup diatur dengan tepat. Penting untuk memastikan bahwa semua komponen terhubung dalam urutan yang benar setiap saat. Setiap gangguan dalam sistem akan menyebabkan terhentinya proses otomatis. Misalnya, beralih ke pengontrol manual.
Sensors dan transducers
Sensor adalah perangkat pengukuran awal dalam loop kontrol. Sensor mengubah variabel proses menjadi sinyal analog atau digital yang sesuai yang dibaca oleh pengontrol dan kemudian dibandingkan dengan titik setel yang diinginkan. Pengukuran biasanya diwakili dalam muatan listrik, tegangan, atau tekanan pneumatik. Jika pembacaan dari sensor berada di luar pita kontrol titik setel, pengontrol kemudian membuka atau menutup sakelar daya untuk menyalakan atau mematikan pemanas hingga suhu yang diinginkan tercapai.
Berbagai macam sensor tersedia di pasaran. Ini diterapkan sesuai dengan jenis variabel yang akan diukur. Watlow menyediakan sensor suhu seperti termokopel atau RTD. Ini memberikan kekuatan dielektrik suhu tinggi yang memastikan sinyal dibawa sesuai dengan instrumentasi atau kontrol.
Transduser adalah sensor canggih yang selanjutnya mengubah nilai yang diberikan melalui pengkondisian sinyal. Misalnya, dalam instrumentasi listrik, arus dapat diubah menjadi pengukuran tegangan. Perangkat konversi ini juga tersedia dalam berbagai bentuk sesuai dengan prinsip kerjanya, seperti kapasitansi dan sifat menghasilkan sendiri.
Pemancar dapat diterapkan untuk menstandarkan sinyal yang diedarkan di seluruh loop kontrol, di mana parameter dimonitor dan dikelola dari jarak jauh. Perangkat yang berfungsi erat dengan sensor ini mampu menangani berbagai sinyal, seperti tekanan, aliran, dan suhu.
Nilai yang diukur dalam sistem kontrol ditampilkan kepada personel operasional. Hal ini dicapai melalui indikator, seperti pengukur tekanan atau tampilan digital pada pengontrol.
Pengontrol
Pengontrol adalah perangkat dalam loop kontrol yang menginterpretasikan pengukuran yang diberikan oleh sensor dan menentukan tindakan kontrol yang harus diambil berdasarkan perbandingan nilai tersebut dengan titik setel. Ada berbagai versi perangkat, termasuk pengontrol suhu, daya, dan proses Watlow.
Pengontrol memerlukan input pembacaan terukur. Ini adalah variabel yang dikontrol dan representasi SP (titik setel) yang dinyatakan sebagai nilai terukur. Pengontrol PID (turunan integral proporsional) dianggap oleh para profesional sebagai pengontrol paling efektif dan stabil yang tersedia di pasar.
Pengontrol dimulai dengan memproses nilai yang diukur melalui komponen yang dikenal sebagai detektor kesalahan. Detektor kesalahan akan menentukan apakah PV yang diukur selaras dengan SP atau nilai referensi.
Pengontrol menggunakan sinyal kesalahan untuk menjalankan tindakan kontrol selanjutnya yang dijalankan untuk mencapai SP. Oleh karena itu, detektor kesalahan perlu menghasilkan sinyal kesalahan sebelum tindakan kontrol disampaikan. Tindakan kontrol secara tradisional dievaluasi dengan pemrosesan sinyal pneumatik atau elektronik.
Elemen kontrol akhir dan aktuator
Elemen kontrol terakhir adalah elemen yang menerima sinyal aksi kontrol dari pengontrol. Elemen ini menyesuaikan variabel proses pada parameter yang diinginkan. Waktu respons merupakan bagian integral dalam desain loop termal yang efektif. Ini sangat meningkatkan manajemen krisis jika PV berada di luar SP yang diinginkan.
Aktuator adalah komponen paling penting dalam elemen kontrol akhir, yang memiliki pengaruh langsung pada proses kontrol. Komponen ini memulai perubahan dengan memproses tindakan kontrol yang dievaluasi, yang mengatur transisi dari PV ke SP.
Perangkat ini biasanya diwakili oleh batang katup atau koil pemanas di sebagian besar pengaturan industri. Perangkat tambahan seperti pengatur posisi katup dapat dipasang untuk meningkatkan tingkat respons aktuator seperti katup kontrol. Pengatur posisi membantu menetapkan posisi katup (aktuator) yang tepat sesuai dengan sinyal keluaran pengontrol.
Industrial control loops
Sebagian besar fungsi pemrosesan yang kompleks dioperasikan berdasarkan dasar-dasar loop kontrol. Loop kontrol diterapkan secara luas dalam sistem kontrol industri (ICS) dan sistem kontrol terdistribusi (DCS) untuk berbagai tujuan. Ini termasuk aplikasi seperti sistem kontrol kualitas, pemrosesan makanan, dan pengolahan air.
Loop kontrol juga diterapkan dalam arsitektur industri melalui jaringan lapangan digital seperti Fieldbus. Dalam situasi seperti itu, berbagai loop kontrol diterapkan sesuai dengan tingkat risiko dan fungsionalitas yang terlibat dalam proyek. Jaringan lapangan digital berfungsi melalui sinyal digital, berbeda dengan varian analog yang lebih umum. Dan melakukannya di bawah protokol ketat yang dimiliki oleh perusahaan tertentu.
Sistem control loops
Dalam industri, dua jenis sistem loop kontrol sering digunakan. Keduanya adalah sistem loop tertutup dan sistem loop terbuka. Tindakan kontrol berfungsi sebagai pembeda utama antara kedua sistem tersebut.
Sistem control loops terbuka
Control Loops Terbuka adalah jenis kontrol di mana tindakan yang diambil oleh pengontrol tidak bergantung pada “output proses” (atau “variabel proses yang dikontrol” – PV). Dalam sistem kontrol dengan loop terbuka, tindakan pengontrol tidak bergantung pada output yang diinginkan. Ini berarti bahwa output tidak dipantau dan tidak diumpankan kembali ke input untuk perbandingan.

Block diagram dari sistem control loops terbuka
Apabila perintah diberikan ke pengontrol, pengontrol akan mengirimkan sinyal untuk mengambil tindakan. Sinyal pengontrol ini dimasukkan ke dalam proses yang perlu dikontrol, dan proses tersebut kemudian menghasilkan output yang diinginkan. Sistem loop terbuka tidak memiliki pemeriksaan dan keseimbangan karena tidak memiliki sistem umpan balik. Ini berarti bahwa sistem diharapkan untuk mengikuti perintah input, apa pun hasil akhirnya.
Juga disebut sebagai sistem kontrol tanpa umpan balik, sistem kontrol loop terbuka. Tindakan kontrol dalam sistem loop terbuka tidak bergantung pada output yang diinginkan.
Sistem control ooops tertutup
Sistem kontrol loop tertutup juga disebut sebagai sistem kontrol umpan balik. Dalam sistem kontrol loop tertutup, tindakan yang diambil untuk mengontrol sesuatu tergantung pada output yang Anda inginkan.

Block diagram dari sistem control loops tertutup
Dalam sistem kontrol loop tertutup, output dibandingkan dengan input referensi, dan sinyal kesalahan dibuat. Sinyal kesalahan kemudian dikirim ke pengontrol untuk mengurangi kesalahan dan mendapatkan output yang diinginkan.
Loop umpan balik adalah komponen penting dari pengontrol loop tertutup. Loop ini memastikan bahwa pengontrol akan selalu melakukan tindakan kontrol untuk menjaga variabel proses pada nilai yang sama dengan setpoint. Pengontrol loop tertutup juga kadang-kadang disebut sebagai pengontrol umpan balik karena alasan ini.
Kesalahan adalah fungsi yang diterapkan pada output pengontrol dalam loop tertutup. Perbedaan antara variabel proses dan titik setel disebut sebagai kesalahan, dan dihitung sebagai E = SP – PV. Kesalahan didefinisikan sebagai penyimpangan variabel proses dari titik setel. Sistem ini lebih dapat diandalkan, lebih cepat, dapat menangani lebih banyak variabel secara bersamaan, dan dapat dioptimalkan.
Perbedaan jenis Control Loops
Linear control systems
Sistem kontrol linier menggunakan umpan balik negatif untuk memberikan sinyal kontrol yang menjaga PV yang diatur pada target SP. Ada beberapa jenis sistem kontrol linier, masing-masing dengan kemampuan yang unik.
Proportional systems
Kontrol proporsional adalah jenis sistem kontrol umpan balik linier di mana koreksi dilakukan pada variabel yang dikontrol yang sebanding dengan perbedaan antara nilai yang diinginkan (SP) dan nilai yang diukur (PV).
Sinyal kontrol disediakan oleh kontrol Proporsional, dan amplitudo serta arahnya sebanding dengan sinyal kesalahan.
Apabila terjadi gangguan, sistem kontrol Proporsional hanya akan memasok skenario keseimbangan massa yang baru. Ketika ada perubahan pada sinyal kontrol, harus ada juga perubahan pada sinyal kesalahan; akibatnya, akan ada offset. Kesalahan distabilkan oleh kontrol Proporsional; kesalahan tidak dihilangkan.
Pita proporsional didefinisikan sebagai perubahan rentang sinyal input, dalam persen, yang akan menyebabkan perubahan seratus persen pada output.
Kontrol on-off cocok untuk sistem dengan persyaratan akurasi atau daya tanggap yang rendah, tetapi tidak efisien untuk penyesuaian dan reaksi yang cepat. Untuk mengatasi hal ini, kontrol proporsional memodulasi variabel proses (PV), seperti katup kontrol, pada tingkat penguatan yang mencegah ketidakstabilan namun tetap memberikan koreksi secepat mungkin.
Di sini, e = SP – PV menunjukkan loop dengan aksi pembalikan. Loop kerja langsung disebut ketika e = PV – SP. Output harus ditingkatkan oleh pengontrol dalam loop kerja langsung karena variabel proses lebih besar dari titik setel. Sistem yang mengatur suhu menggunakan air pendingin adalah contoh sistem kerja langsung. Dalam loop kerja terbalik, output dikurangi oleh pengontrol karena variabel proses lebih rendah dari titik setel. Contohnya adalah sistem kontrol suhu berbasis uap.
Kontrol proporsional yang ditunjukkan pada gambar berikutnya menunjukkan bagaimana selalu ada ketidakakuratan kondisi tunak. Ketika penguatan proporsional ditingkatkan, ketidakakuratan akan berkurang, tetapi kecenderungan osilasi juga akan tumbuh.
Integral control
Integral Control berusaha mengatasi masalah pertama dengan kontrol proporsional dengan menyelesaikan ketidaktepatan kecil (offset). Integral melihat ketidakakuratan dari waktu ke waktu dan memperkuat bahkan kesalahan kecil dari waktu ke waktu. Integral sama dengan kesalahan dikalikan dengan seluruh jumlah waktu dimana kesalahan tersebut ada.
Pada waktu nol, sedikit kesalahan tidak memiliki konsekuensi. Kesalahan kecil pada waktu 10 memiliki konsekuensi yang sama dengan kesalahan 10 kali. Hasilnya, integral membuat sistem lebih responsif terhadap masalah tertentu dari waktu ke waktu sampai masalah tersebut diperbaiki. Selain itu, integral dapat disesuaikan; penyesuaian ini dikenal sebagai laju reset.
Laju reset adalah faktor waktu. Kecepatan koreksi kesalahan meningkat dengan menurunnya laju reset. Namun, laju reset yang terlalu tinggi dapat menghasilkan kinerja yang tidak konsisten. Potensiometer yang memodifikasi konstanta waktu rangkaian RC dapat digunakan untuk mengadaptasi sistem berbasis perangkat keras. Mayoritas sistem yang digunakan saat ini menggunakan kontrol berbasis perangkat lunak, termasuk modul PLC yang memungkinkan para insinyur untuk mengubah parameter laju reset.
di mana :
Sinyal kesalahan, e = Titik setel (SP) – Variabel proses (PV)
Kontroler dapat mendorong kesalahan ke nol karena dapat menyesuaikan outputnya selama masalah berlanjut. Terdapat waktu reaksi yang lebih lambat (dibandingkan dengan mode P saja). Ini menggabungkan aspek yang paling menguntungkan dari mode proporsional dan integral. Dengan kehilangan kecepatan reaksi yang minimal, offset proporsional dihilangkan.
Derivative control
Bagian turunan dari output kontrol berupaya memeriksa laju perubahan sinyal kesalahan. Laju perubahan yang tinggi akan menghasilkan reaksi sistem yang lebih kuat dari turunan daripada laju perubahan yang lambat. Dengan kata lain, jika kesalahan sistem terus meningkat, pengontrol pasti tidak melakukan koreksi yang cukup sebagai respons.
Derivatif memberikan reaksi yang lebih kuat karena dapat mendeteksi seberapa cepat kesalahan berubah. Derivatif juga dikenal sebagai laju waktu karena disesuaikan dengan waktu. Sangat penting untuk menghindari penggunaan turunan yang terlalu banyak karena hal ini dapat menyebabkan overshoot atau kontrol yang tidak konsisten.
Istilah turunan (Dout) dilambangkan secara matematis sebagai berikut:
Sebagian besar waktu, mereka terlihat dalam hubungannya dengan kontrol proporsional dan komponen kontrol lainnya. Reaksi pengontrol PD terhadap perubahan ramp dalam kesalahan, Sebuah offset dapat dihasilkan dengan menggunakan kontrol PD. Bias “b” harus diatur untuk mencegah offset proporsional. Kontrol suhu, pH, dan komposisi adalah contoh kontrol proses respons lambat yang khas.
PID Control
Tugas yang dilakukan oleh ketiga kontrol, kontrol proporsional mengubah sinyal input dalam proporsi langsung dengan varians dalam sinyal kesalahan. Kontrol ini bereaksi seketika terhadap kesalahan pelacakan saat ini, tetapi tanpa penguatan yang sangat tinggi, kontrol ini tidak dapat mencapai konsistensi titik setel yang diperlukan. Istilah proporsional sering kali membutuhkan komponen lain sebagai respons. Sinyal output berubah di bawah kontrol integral sebagai fungsi integral dari sinyal kesalahan dari waktu ke waktu. Saat memantau titik setel tetap, istilah integral menghasilkan kesalahan kondisi tunak nol. Selain itu, ini menentang gangguan yang sedang berlangsung. Tindakan derivatif menghilangkan kesalahan transien dan memodifikasi sinyal keluaran sesuai dengan laju perubahan sinyal kesalahan.
Output kontrol, juga dikenal sebagai variabel kontrol, akan ditentukan berdasarkan kontribusi dari ketiga istilah tersebut:
Variabel Kontrol = Pout + Iout + Dout
Analog or Continuous System
Dalam kategori sistem kontrol ini, input ke sistem diwakili oleh sinyal yang terus menerus hadir. Fungsi waktu yang terus menerus diwakili oleh sinyal-sinyal ini. Kita mungkin memiliki sejumlah sumber sinyal input kontinu yang berbeda, seperti sumber sinyal tipe sinusoidal, sumber sinyal tipe persegi, atau sinyal dapat berbentuk segitiga kontinu, di antara bentuk-bentuk lain yang memungkinkan.
Kesimpulan
Dari artikel yang telah kami paparkan diatas, yaitu “Control Loops : Definisi dan Jenisnya” dapat ditarik kesimpulan, sebagai berikut :
Sumber: https://wma.co.id/