Keselamatan Kebakaran
Dipublikasikan oleh Izura Ramadhani Fauziyah pada 14 Maret 2025
Kebakaran di bangunan bertingkat tinggi menjadi tantangan besar bagi petugas pemadam kebakaran di banyak kota, termasuk Rawalpindi, Pakistan. Salah satu insiden kebakaran paling tragis terjadi di Ghakkar Plaza, Rawalpindi, pada 2008, yang menewaskan 13 petugas pemadam kebakaran. Kejadian ini menyoroti berbagai kelemahan dalam sistem tanggap darurat kebakaran, seperti kurangnya koordinasi, keterbatasan sumber daya, dan ketidakpatuhan terhadap peraturan keselamatan gedung.
Studi ini bertujuan untuk mengeksplorasi pandangan pemadam kebakaran mengenai cara meningkatkan respons darurat kebakaran di bangunan tinggi. Dengan menggunakan pendekatan kualitatif, penelitian ini melibatkan 25 petugas pemadam kebakaran dari lima stasiun penyelamatan di Rawalpindi serta dua diskusi kelompok terfokus (focus group discussion) dengan 10 peserta.
Penelitian ini menggunakan metode wawancara semi-terstruktur dan diskusi kelompok terfokus untuk mengidentifikasi faktor-faktor yang memengaruhi respons darurat kebakaran. Terdapat empat aspek utama yang diteliti:
Berdasarkan wawancara, 95% responden menyatakan bahwa kurangnya peralatan dan kendaraan pemadam kebakaran menjadi tantangan utama dalam operasi pemadaman kebakaran di bangunan tinggi.
Sebanyak 90% responden melaporkan bahwa kurangnya koordinasi dengan dinas lalu lintas dan kepolisian menghambat respons kebakaran.
Menurut 95% responden, banyak bangunan di Rawalpindi yang tidak mematuhi peraturan keselamatan kebakaran.
Meskipun sebagian besar petugas telah mendapatkan pelatihan dasar, 70% responden menyatakan bahwa mereka membutuhkan pelatihan lanjutan dalam menangani kebakaran gedung tinggi.
Salah satu insiden kebakaran paling tragis yang dianalisis dalam penelitian ini adalah kebakaran di Ghakkar Plaza pada 20 Desember 2008.
Insiden ini menunjukkan pentingnya implementasi sistem keselamatan kebakaran yang lebih ketat, termasuk inspeksi rutin terhadap gedung bertingkat tinggi dan peningkatan kapasitas tim pemadam kebakaran. Berdasarkan hasil penelitian, beberapa langkah dapat dilakukan untuk meningkatkan efektivitas respons kebakaran di Rawalpindi:
1. Peningkatan Infrastruktur dan Peralatan Pemadam Kebakaran
2. Meningkatkan Koordinasi Antar-Instansi
3. Memperketat Standar Keselamatan Gedung
4. Peningkatan Kapasitas dan Pelatihan Pemadam Kebakaran
Studi ini menegaskan bahwa respons pemadam kebakaran di Rawalpindi masih menghadapi berbagai tantangan, terutama dalam aspek sumber daya, koordinasi antar-lembaga, dan kepatuhan terhadap standar keselamatan gedung. Dengan meningkatkan infrastruktur, memperkuat koordinasi, serta menerapkan regulasi yang lebih ketat, keselamatan publik dalam kebakaran bangunan tinggi dapat ditingkatkan secara signifikan.
Sumber
Akhter, S. (2014). Firefighters’ View on Improving Fire Emergency Response: A Case Study of Rawalpindi. International Journal of Humanities and Social Science, 4(7), 143-149.
Keselamatan Kerja
Dipublikasikan oleh Izura Ramadhani Fauziyah pada 14 Maret 2025
Bencana dan keadaan darurat dapat terjadi di mana saja dan kapan saja, termasuk di tempat kerja. Kejadian seperti kebakaran, gempa bumi, banjir, ledakan bahan kimia, hingga insiden radiologi dapat mengganggu operasional bisnis, menyebabkan kerugian material, serta membahayakan keselamatan pekerja. Oleh karena itu, setiap perusahaan wajib memiliki rencana darurat yang komprehensif untuk memitigasi risiko bencana dan mengurangi dampak yang ditimbulkan. Penelitian yang dilakukan oleh Murat Can Duruel dan Ahmet Çelebi bertujuan untuk mengembangkan dan mengimplementasikan rencana bencana dan keadaan darurat yang efektif di tempat kerja. Studi ini mengadopsi metode analisis dokumen dan menerapkan rencana darurat pada sebuah pabrik produksi alat tulis di Kocaeli, Turki.
Penelitian ini dilakukan dalam dua tahap utama:
Empat tahap utama dalam pembuatan rencana bencana di tempat kerja:
1. Pembentukan Tim Perencana
Tim perencana terdiri dari berbagai pihak yang memiliki tanggung jawab dalam keselamatan kerja, termasuk:
Tim ini bertanggung jawab dalam mengidentifikasi potensi risiko, mengembangkan prosedur tanggap darurat, serta menyusun rencana komunikasi dan evakuasi.
2. Identifikasi Bahaya dan Analisis Risiko
Bahaya yang diidentifikasi dalam studi ini meliputi:
Studi ini menggunakan matriks risiko tipe L untuk mengevaluasi tingkat risiko berdasarkan dua faktor utama:
Hasil analisis menunjukkan bahwa kebakaran dan paparan bahan kimia merupakan ancaman paling signifikan bagi pabrik tersebut.
3. Pengembangan dan Implementasi Rencana Darurat
Berdasarkan hasil analisis risiko, studi ini menyusun strategi mitigasi dan respons terhadap keadaan darurat, yang mencakup:
A. Tindakan Pencegahan dan Mitigasi
B. Prosedur Evakuasi dan Komunikasi Darurat
C. Pembentukan Tim Tanggap Darurat
Tim tanggap darurat terdiri dari:
4. Evaluasi dan Simulasi
Studi ini menekankan pentingnya pengujian rencana darurat melalui simulasi berkala. Dalam pabrik yang menjadi studi kasus:
Pada 15 Januari 2023, terjadi kebakaran di salah satu gudang penyimpanan bahan baku.
Hasil evaluasi menunjukkan bahwa rencana tanggap darurat yang diterapkan berhasil mencegah kebakaran menjadi lebih besar dan menyelamatkan pekerja. Namun, perlu ada perbaikan dalam sistem komunikasi untuk memastikan seluruh karyawan menerima informasi secara lebih cepat. Penelitian ini menegaskan bahwa rencana bencana dan keadaan darurat yang efektif dapat mengurangi dampak insiden serta meningkatkan keselamatan pekerja. Beberapa rekomendasi utama dari studi ini meliputi:
Dengan menerapkan strategi ini, perusahaan dapat meningkatkan ketahanan terhadap bencana, melindungi aset, serta memastikan keselamatan pekerja dalam jangka panjang.
Sumber
Duruel, M. C., & Çelebi, A. (2023). Workplace Disaster and Emergency Plans, Risk Analysis and Implementation. Resilience Journal, 7(2), 357-373.
Industri Energi
Dipublikasikan oleh Izura Ramadhani Fauziyah pada 14 Maret 2025
Industri energi, terutama pembangkit listrik tenaga uap (PLTU), memiliki risiko tinggi terhadap kebakaran akibat penggunaan bahan bakar, panas berlebih, dan oksigen dalam jumlah besar. Jika tidak ditangani dengan sistem keselamatan yang optimal, kebakaran dapat mengancam keselamatan pekerja, merusak aset, serta mengganggu operasional perusahaan. Penelitian ini mengevaluasi efektivitas sistem tanggap darurat kebakaran di PT. X, sebuah perusahaan Independent Power Producer (IPP) PLTU berkapasitas 2 x 50 MW. Evaluasi dilakukan dengan membandingkan sistem proteksi kebakaran yang diterapkan dengan standar nasional dan internasional untuk menentukan tingkat kesesuaiannya.
Penelitian ini menggunakan pendekatan fenomenologi kualitatif dengan teknik purposive sampling, melibatkan empat informan utama, yaitu:
Data dikumpulkan melalui wawancara, observasi, dan analisis dokumen kebakaran, kemudian dibandingkan dengan regulasi nasional, termasuk:
Rata-rata tingkat kesesuaian manajemen proteksi kebakaran di PT. X terhadap standar adalah 83,3%, yang termasuk dalam kategori "Baik" menurut standar Badan Litbang PU Departemen Pekerjaan Umum (2005).
Namun, masih terdapat beberapa kelemahan dalam implementasi prosedur operasional, terutama dalam koordinasi antar-divisi saat terjadi kebakaran.
Proteksi aktif melibatkan alat dan teknologi yang langsung berfungsi saat kebakaran terjadi. Evaluasi menunjukkan tingkat kesesuaian 85,5%, mencakup:
Kelemahan utama dalam sistem proteksi aktif adalah kurangnya alat pemadam otomatis di beberapa titik kritis. Proteksi pasif meliputi jalur evakuasi, pintu darurat, tangga darurat, dan tempat berkumpul. Evaluasi menunjukkan tingkat kesesuaian 80%, dengan rincian:
Peningkatan diperlukan terutama dalam penandaan jalur evakuasi dan penyediaan tangga darurat yang lebih sesuai dengan standar kebakaran. Pada 17 November 2022 pukul 08.45 WITA, terjadi kebakaran di area Laydown Project akibat kesalahan operasional saat pemotongan besi.
Insiden ini menunjukkan bahwa sistem respons kebakaran cukup efektif, tetapi pencegahan masih perlu ditingkatkan, terutama dalam:
Rekomendasi untuk Peningkatan Keselamatan Kebakaran
1. Optimalisasi Sistem Proteksi Aktif
2. Peningkatan Sistem Proteksi Pasif
3. Peningkatan Pelatihan dan Simulasi Kebakaran
Evaluasi sistem tanggap darurat kebakaran di PT. X menunjukkan tingkat kesesuaian 82,9%, yang dikategorikan sebagai "Baik". Meskipun sudah memenuhi sebagian besar standar keselamatan, masih ada ruang untuk perbaikan, terutama dalam proteksi aktif dan jalur evakuasi. Penerapan rekomendasi ini dapat meningkatkan efektivitas sistem tanggap darurat, mengurangi risiko kebakaran, serta meningkatkan keselamatan pekerja dan infrastruktur perusahaan.
Sumber
Hafifah, N., Pratiwi, A. D., & Dewi, S. T. (2024). Analisis Penerapan Sistem Tanggap Darurat Kebakaran di PT. X. Jurnal Kesehatan dan Keselamatan Kerja Universitas Halu Oleo, 5(1), 30-39.
Reliability Block Diagram
Dipublikasikan oleh Dewi Sulistiowati pada 14 Maret 2025
Pendahuluan
Industri minyak dan gas menghadapi tantangan besar dalam menjaga keamanan operasional di tengah kondisi lingkungan yang ekstrem. Salah satu sistem keselamatan utama dalam industri ini adalah High Integrity Pressure Protection System (HIPPS), yang berfungsi mencegah tekanan berlebih pada pipa dan peralatan produksi guna menghindari risiko ledakan atau kebocoran.
Penelitian yang dilakukan oleh Jacob Glæsner di Aalborg University Esbjerg berfokus pada evaluasi kuantitatif keandalan HIPPS pada Svend oil & gas platform. Studi ini membandingkan tiga metode analisis utama, yaitu Reliability Block Diagram (RBD), Fault Tree Analysis (FTA), dan Markov Modelling, untuk menentukan metode paling efektif dalam menilai keandalan HIPPS dan memastikan sistem ini memenuhi standar Safety Integrity Level (SIL) 2.
Pendekatan Evaluasi Keandalan HIPPS
Reliability Block Diagram (RBD)
Pendekatan ini digunakan untuk memodelkan keandalan sistem berdasarkan konfigurasi blok yang mewakili komponen individu. Jika salah satu blok gagal dalam sistem seri, seluruh sistem dianggap gagal. Sebaliknya, jika sistem memiliki konfigurasi paralel atau redundansi, kegagalan satu blok tidak serta-merta menyebabkan kegagalan sistem secara keseluruhan.
Metode RBD sangat cocok untuk sistem yang memiliki konfigurasi redundan seperti HIPPS, karena memungkinkan analisis terhadap bagaimana penempatan sensor dan logic solver dapat meningkatkan keandalan. Namun, pendekatan ini memiliki keterbatasan dalam menangani kegagalan yang saling bergantung (dependent failures) dan kurang fleksibel dalam memodelkan sistem yang berubah seiring waktu.
Fault Tree Analysis (FTA)
Metode FTA digunakan untuk menguraikan hubungan antar komponen HIPPS dalam bentuk diagram pohon kegagalan. Dengan menggunakan pendekatan logika AND-OR, FTA dapat mengidentifikasi penyebab utama kegagalan dan menghitung probabilitas kegagalan sistem secara keseluruhan.
Pendekatan ini sangat bermanfaat dalam menganalisis Probability of Failure on Demand (PFD), yang merupakan indikator penting dalam menentukan apakah HIPPS memenuhi standar SIL 2 atau tidak. Namun, semakin kompleks sistem yang dianalisis, semakin sulit pula menyusun diagram pohon yang merepresentasikan seluruh kegagalan potensial.
Markov Modelling
Berbeda dengan dua metode sebelumnya, Markov Modelling mampu menangani perubahan status sistem secara dinamis. Dalam model ini, setiap komponen HIPPS memiliki beberapa kemungkinan kondisi, seperti berfungsi normal, mengalami degradasi, atau mengalami kegagalan total. Dengan menggunakan persamaan probabilistik, metode ini dapat memodelkan dampak dari perawatan prediktif dan deteksi dini terhadap keandalan HIPPS.
Keunggulan utama dari pendekatan Markov adalah kemampuannya dalam menangani kegagalan yang saling bergantung dan memodelkan sistem yang berubah seiring waktu. Namun, metode ini memiliki kompleksitas perhitungan yang jauh lebih tinggi dibandingkan RBD dan FTA, serta memerlukan data yang lebih rinci untuk memberikan hasil yang akurat.
Studi Kasus: Evaluasi HIPPS pada Svend Platform
Penelitian ini menerapkan metode di atas pada HIPPS yang digunakan di Svend oil & gas platform. Beberapa hasil yang ditemukan adalah sebagai berikut:
Hasil dan Implikasi
Hasil penelitian ini menunjukkan bahwa:
✅ Markov Modelling adalah metode paling akurat dalam menganalisis keandalan HIPPS karena mampu menangani kegagalan yang saling bergantung dan memodelkan perubahan sistem secara dinamis.
✅ RBD merupakan metode yang lebih sederhana dan mudah diimplementasikan, tetapi kurang mampu menangani kegagalan terkait antar komponen.
✅ FTA memberikan hasil yang cukup akurat untuk menentukan PFD dan menilai kepatuhan terhadap standar SIL, tetapi kompleksitasnya meningkat saat sistem menjadi lebih besar.
✅ Penerapan redundansi pada sensor dan logic solver dapat meningkatkan keandalan HIPPS secara signifikan, sehingga lebih efektif dalam mencegah tekanan berlebih.
Kesimpulan
Penelitian ini membuktikan bahwa High Integrity Pressure Protection System (HIPPS) merupakan elemen penting dalam memastikan keamanan operasional di industri minyak dan gas. Dengan menggunakan Reliability Block Diagram (RBD), Fault Tree Analysis (FTA), dan Markov Modelling, operator dapat memilih metode terbaik untuk memastikan sistem HIPPS memenuhi standar Safety Integrity Level (SIL) 2.
Sumber Asli: Glæsner, J. (2017). Quantitative Reliability Modelling and Functional Safety Calculations of Svend Topside High Integrity Pressure Protection System. Aalborg University Esbjerg.
Industri Minyak dan Gas
Dipublikasikan oleh Izura Ramadhani Fauziyah pada 14 Maret 2025
Industri minyak dan gas merupakan salah satu sektor dengan risiko tinggi terhadap kecelakaan, kebakaran, ledakan, dan pencemaran lingkungan. Oleh karena itu, penerapan sistem tanggap darurat kebakaran sangat penting untuk meminimalkan risiko, melindungi pekerja, serta menjaga lingkungan tetap aman. Paper ini membahas bagaimana perusahaan minyak dan gas di Jawa Tengah menerapkan sistem tanggap darurat kebakaran, termasuk identifikasi potensi bahaya, fasilitas perlindungan kebakaran, serta langkah-langkah pencegahan. Studi ini menggunakan metode deskriptif dengan pendekatan cross-sectional, dengan data yang dikumpulkan pada Februari–April 2017.
Potensi bahaya kebakaran dalam perusahaan minyak dan gas sangat tinggi, terutama dalam fasilitas produksi dan penyimpanan. Beberapa sumber utama bahaya kebakaran meliputi:
Studi mencatat bahwa beberapa insiden kebakaran telah terjadi di perusahaan ini, termasuk:
Penelitian ini menemukan bahwa perusahaan telah menerapkan dua jenis sistem perlindungan kebakaran, yaitu proteksi aktif dan proteksi pasif.
A. Proteksi Kebakaran Aktif
Proteksi aktif mencakup berbagai alat pemadam kebakaran yang langsung berfungsi saat terjadi kebakaran, termasuk:
B. Proteksi Kebakaran Pasif
Proteksi pasif dirancang untuk membantu evakuasi dan mencegah penyebaran kebakaran, termasuk:
Perusahaan telah membentuk tim pemadam kebakaran internal, yang terdiri dari 3 tim dengan total 18 orang, yang berjaga 24 jam dalam dua shift:
Setiap tim terdiri dari:
Perusahaan secara rutin mengadakan:
Penelitian ini menyoroti pentingnya sistem tanggap darurat dengan membandingkannya dengan beberapa insiden kebakaran besar di sektor minyak dan gas, termasuk:
Kasus-kasus ini menunjukkan bahwa pengelolaan sistem tanggap darurat kebakaran yang baik sangat penting untuk mencegah dampak besar.
Studi ini menegaskan bahwa perusahaan minyak dan gas di Jawa Tengah telah menerapkan sistem tanggap darurat kebakaran yang cukup baik, namun masih perlu beberapa peningkatan, seperti:
Dengan menerapkan strategi ini, perusahaan dapat lebih siap menghadapi insiden kebakaran, melindungi pekerja, serta menjaga stabilitas operasional dan lingkungan.
Sumber Asli Paper
Habibah, A. N., & Cahyaningrum, I. (2022). The Implementation of Fire Emergency Response in the Central Java Oil and Gas Company. The Indonesian Journal of Occupational Safety and Health, 11(1), 21-32.
Reliability Block Diagram
Dipublikasikan oleh Dewi Sulistiowati pada 14 Maret 2025
Pendahuluan
Dalam industri otomotif modern, produsen kendaraan (Original Equipment Manufacturers – OEMs) berusaha mengintegrasikan sebanyak mungkin fungsi elektronik ke dalam unit kontrol elektronik (Electronic Control Unit – ECU), sensor, dan aktuator, tanpa mengorbankan keselamatan dan kenyamanan.
Salah satu tantangan utama dalam desain sistem mekatronik adalah menyeimbangkan kebutuhan keandalan, biaya, dan kinerja. Kesalahan dalam desain dapat menyebabkan biaya produksi tinggi dan risiko kegagalan sistem yang berakibat pada penarikan produk secara massal.
Penelitian yang dilakukan oleh Amir Kazeminia dalam disertasinya di Universitas Duisburg-Essen berfokus pada pengembangan kerangka kerja optimalisasi keandalan perangkat keras dan topologi sistem di tahap awal desain. Pendekatan ini menggunakan System Reliability Matrix (SRM) untuk membantu desainer memilih topologi dan komponen terbaik berdasarkan batasan teknis dan finansial.
Konsep Reliability Block Diagram (RBD) dalam Desain Otomotif
Dalam desain sistem otomotif, Reliability Block Diagram (RBD) digunakan untuk memvisualisasikan hubungan antara berbagai komponen dan menghitung keandalan sistem secara keseluruhan.
Metode ini memungkinkan insinyur untuk:
✅ Menentukan konfigurasi optimal dari segi seri, paralel, bridge, atau k-out-of-n.
✅ Menganalisis dampak kegagalan komponen terhadap seluruh sistem.
✅ Mengoptimalkan kombinasi komponen agar memenuhi standar keandalan tanpa meningkatkan biaya berlebihan.
Metodologi Optimalisasi Keandalan
Penelitian ini mengusulkan kerangka kerja optimalisasi keandalan perangkat keras dengan pendekatan berikut:
Studi Kasus: Implementasi pada Sistem Steer-by-Wire dan Brake-by-Wire
Sebagai validasi, penelitian ini menerapkan pendekatan optimalisasi keandalan pada dua sistem otomotif kritis:
1. Sistem Steer-by-Wire
2. Sistem Brake-by-Wire
Hasil dan Implikasi
Hasil studi ini menunjukkan bahwa:
✅ Pendekatan berbasis System Reliability Matrix (SRM) dapat meningkatkan efisiensi desain keandalan.
✅ Optimalisasi topologi dapat mengurangi biaya produksi hingga 20% tanpa mengorbankan standar keandalan.
✅ Algoritma genetika dan metode numerik efektif dalam mengidentifikasi desain terbaik di bawah batasan teknis dan finansial.
✅ Penerapan pada sistem Steer-by-Wire dan Brake-by-Wire menunjukkan peningkatan signifikan dalam keandalan operasional.
Kesimpulan
Penelitian ini menegaskan bahwa strategi optimalisasi keandalan perangkat keras dan topologi sistem sangat penting dalam desain awal kendaraan modern. Dengan memanfaatkan System Reliability Matrix (SRM), Reliability Block Diagram (RBD), dan algoritma optimasi, produsen otomotif dapat menghasilkan desain yang lebih andal, efisien, dan hemat biaya.
Sumber : Kazeminia, A. (2013). Reliability Optimization of Hardware Components and System’s Topology during Early Design Phase. Universität Duisburg-Essen.