Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025
Daya listrik adalah laju transfer energi listrik dalam suatu rangkaian. Satuan SI-nya adalah watt, satuan umum daya, yang didefinisikan sebagai satu joule per detik. Awalan standar berlaku untuk watt seperti pada satuan SI lainnya: ribuan, jutaan, dan miliaran watt masing-masing disebut kilowatt, megawatt, dan gigawatt.
Dalam bahasa umum, tenaga listrik adalah produksi dan pengiriman energi listrik, sebuah utilitas publik yang penting di sebagian besar dunia. Tenaga listrik biasanya dihasilkan oleh generator listrik, tetapi juga dapat dipasok oleh sumber-sumber seperti baterai listrik. Tenaga listrik biasanya disalurkan ke bisnis dan rumah (sebagai listrik rumah tangga) oleh industri tenaga listrik melalui jaringan listrik. Tenaga listrik dapat dikirim dalam jarak jauh melalui saluran transmisi dan digunakan untuk aplikasi seperti gerakan, cahaya, atau panas dengan efisiensi tinggi.
Definisi
Daya listrik, seperti halnya daya mekanik, adalah laju kerja yang diukur dalam watt, dan diwakili oleh huruf P. Istilah watt digunakan dalam bahasa sehari-hari yang berarti “daya listrik dalam watt”. Daya listrik dalam watt yang dihasilkan oleh arus listrik I yang terdiri dari muatan sebesar Q coulomb setiap t detik yang melewati perbedaan potensial listrik (tegangan) sebesar V adalah:
Di mana:
Penjelasan Energi Listrik
Energi listrik telah menjadi bagian yang tak terpisahkan dari kehidupan modern kita. Namun, tahukah Anda bagaimana energi ini benar-benar bekerja? Mari kita jelajahi dunia listrik ini bersama-sama, mulai dari sirkuit sederhana hingga konsep yang lebih kompleks tentang medan elektromagnetik.
Dalam sebuah sirkuit listrik, ada dua jenis komponen utama: sumber daya aktif dan beban pasif. Sumber daya aktif, seperti generator dan baterai, mengonversikan bentuk energi lain, seperti mekanik atau kimia, menjadi energi listrik. Sementara beban pasif, seperti bola lampu atau motor listrik, mengonsumsi energi listrik dan mengubahnya menjadi bentuk energi lain, seperti cahaya atau gerakan.
Untuk sirkuit AC, kita dapat membagi daya listrik menjadi tiga komponen: daya nyata, daya reaktif, dan daya semu. Daya nyata adalah daya yang benar-benar ditransfer dan digunakan, sementara daya reaktif hanya bergerak bolak-balik antara sumber dan beban. Daya semu adalah kombinasi keduanya, dan dapat divisualisasikan sebagai segitiga daya yang menggambarkan hubungan antara ketiga komponen tersebut.
Namun, energi listrik tidak hanya terbatas pada sirkuit. Ia juga termanifestasi dalam bentuk medan elektromagnetik yang terjadi di mana pun ada perubahan medan listrik dan medan magnet secara bersamaan. Aliran energi ini dapat dihitung dengan mengintegralkan vektor Poynting di seluruh permukaan tertutup. Pemahaman tentang medan elektromagnetik ini memiliki implikasi besar dalam berbagai bidang seperti komunikasi nirkabel, pemanfaaran energi, dan bahkan dunia medis.
Produksi
Prinsip-prinsip dasar dari sebagian besar pembangkit listrik ditemukan pada tahun 1820-an dan awal 1830-an oleh ilmuwan Inggris, Michael Faraday. Metode dasarnya masih digunakan sampai sekarang: arus listrik dihasilkan oleh pergerakan lingkaran kawat, atau cakram tembaga di antara kutub magnet.
Bagi perusahaan listrik, ini adalah proses pertama dalam pengiriman listrik ke konsumen. Proses lainnya, transmisi listrik, distribusi, dan penyimpanan dan pemulihan energi listrik menggunakan metode penyimpanan yang dipompa biasanya dilakukan oleh industri tenaga listrik.
Listrik sebagian besar dihasilkan di pembangkit listrik oleh generator elektromekanis, yang digerakkan oleh mesin panas yang dipanaskan oleh pembakaran, tenaga panas bumi, atau fisi nuklir. Generator lainnya digerakkan oleh energi kinetik air dan angin yang mengalir. Ada banyak teknologi lain yang digunakan untuk menghasilkan listrik seperti panel surya fotovoltaik.
Alat Ukur
Alat yang digunakan untuk mengukur daya listrik disebut wattmeter, yang bekerja berdasarkan prinsip kerja amperemeter, voltmeter, dan gaya Lorentz. Wattmeter terdiri dari kumparan arus dan kumparan tegangan, yang dapat digunakan untuk mengukur tegangan dan arus baik searah maupun bolak-balik.
Penerapan Tenaga Listrik
Tenaga listrik, yang diproduksi dari stasiun pembangkit pusat dan didistribusikan melalui jaringan transmisi listrik, digunakan secara luas dalam aplikasi industri, komersial, dan konsumen. Konsumsi daya listrik per kapita suatu negara berkorelasi dengan perkembangan industrinya. Motor listrik menggerakkan mesin-mesin manufaktur dan menggerakkan kereta bawah tanah dan kereta api. Pencahayaan listrik adalah bentuk cahaya buatan yang paling penting. Energi listrik digunakan secara langsung dalam proses-proses seperti ekstraksi aluminium dari bijihnya dan dalam produksi baja dalam tungku busur listrik. Tenaga listrik yang andal sangat penting untuk telekomunikasi dan penyiaran. Tenaga listrik digunakan untuk menyediakan pendingin ruangan di iklim panas, dan di beberapa tempat, tenaga listrik merupakan sumber energi yang kompetitif secara ekonomi untuk pemanas ruangan gedung. Penggunaan tenaga listrik untuk memompa air berkisar dari sumur rumah tangga hingga proyek irigasi dan penyimpanan energi.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025
Listrik adalah fenomena fisika yang melibatkan kehadiran dan pergerakan muatan listrik. Berbagai efek listrik yang umum dikenal meliputi petir, listrik statis, induksi elektromagnetik, dan arus listrik. Listrik juga dapat menghasilkan dan menerima radiasi elektromagnetik seperti gelombang radio.
Dalam konteks listrik, muatan menghasilkan medan elektromagnetik yang memengaruhi muatan lainnya. Fenomena listrik melibatkan beberapa konsep fisika, termasuk muatan listrik, medan listrik, potensial listrik, arus listrik, dan elektromagnetisme. Dalam bidang teknik elektro, listrik digunakan untuk menyediakan tenaga listrik yang diperlukan untuk mengoperasikan peralatan dan untuk mengatur sirkuit listrik yang melibatkan komponen-komponen seperti tabung vakum, transistor, dioda, dan sirkuit terintegrasi.
Meskipun pemahaman teoritis tentang listrik berkembang perlahan pada abad ke-17 dan ke-18, penerapan praktisnya baru mulai signifikan pada akhir abad ke-19. Perkembangan teknologi listrik yang pesat telah mengubah berbagai industri dan kehidupan sehari-hari. Fleksibilitas listrik yang besar memungkinkan penggunaannya dalam berbagai bidang seperti transportasi, pemanasan, penerangan, telekomunikasi, dan komputasi. Sebagai tulang punggung masyarakat industri modern, tenaga listrik memiliki peran penting yang tak tergantikan.
Sejarah singkat listrik
Sebelum pengetahuan tentang listrik berkembang, orang zaman dulu mengamati ikan listrik dengan takut. Mereka, seperti penduduk Mesir Kuno, menganggap ikan listrik sebagai "pelindung" dari ikan lainnya. Pengamatan tentang efek mati rasa sengatan listrik dari ikan ini telah dilakukan sejak zaman kuno oleh berbagai budaya, seperti Yunani Kuno dan Kekaisaran Romawi. Beberapa penulis kuno, termasuk Plinius yang Tua dan Scribonius Largus, telah mencatat efek ini. Kemungkinan pendekatan awal terhadap penemuan listrik berasal dari orang-orang Arab, yang telah memiliki kata berbahasa Arab untuk petir sebelum abad ke-15.
Beberapa budaya kuno di sekitar Mediterania mengetahui bahwa benda seperti batang ambar dapat digosok dengan bulu kucing untuk menarik benda ringan. Pada tahun 600 SM, Thales mengamati fenomena listrik statis, meskipun pada saat itu dia belum sepenuhnya memahami hubungan antara listrik dan magnetisme. William Gilbert dari Inggris membedakan efek lodestone dari listrik statis pada tahun 1600, dan dia menggunakan istilah "electricus" untuk merujuk pada sifat menarik benda ringan setelah digosok.
Pada abad ke-18, ilmuwan seperti Otto von Guericke, Robert Boyle, Stephen Gray, dan C. F. du Fay terus melakukan penelitian tentang listrik. Pada pertengahan abad ke-18, Benjamin Franklin berhasil menunjukkan bahwa kilat adalah bentuk listrik di alam. Pada tahun 1791, Luigi Galvani menemukan bahwa listrik memainkan peran penting dalam komunikasi antara sel saraf dan otot. Alessandro Volta menciptakan tumpukan volta pada tahun 1800, yang memberikan sumber energi listrik yang lebih dapat diandalkan daripada mesin elektrostatis sebelumnya.
Pada abad ke-19, penemuan-penemuan seperti motor listrik oleh Michael Faraday, analisis matematis sirkuit listrik oleh Georg Ohm, dan konsep elektromagnetisme oleh Hans Christian Ørsted dan André-Marie Ampère menandai perkembangan cepat dalam ilmu kelistrikan. Penemuan baterai oleh Alessandro Volta juga memainkan peran penting dalam memperluas pemahaman tentang listrik.
Pada awal abad ke-20, perkembangan kelistrikan semakin pesat, dengan penemuan-penemuan seperti efek fotolistrik oleh Albert Einstein dan penemuan transistor pada tahun 1947. Ini membuka jalan bagi pengembangan teknologi komponen padat seperti chip mikroprosesor dan solid-state drive yang digunakan pada perangkat elektronik modern.
Konsep listrik
Muatan listrik:
Muatan listrik menghasilkan gaya elektrostatis, yang telah dikenal sejak zaman kuno. Fenomena ini diamati pada bola yang digantung dari senar yang diberi muatan dengan cara menyentuhkannya dengan pengaduk kaca atau batang amber yang telah dimuati. Charles-Augustin de Coulomb meneliti fenomena ini pada abad ke-18 dan menemukan bahwa muatan sejenis akan tolak-menolak, sementara muatan berlawanan jenis akan tarik-menarik.
Arus listrik:
Arus listrik adalah perpindahan muatan listrik, diukur dalam ampere. Arus dapat terdiri dari berbagai partikel bermuatan, seperti elektron atau ion, dan mengalir melalui berbagai media konduktor. Arus konvensional, yang ditentukan dari arah aliran muatan positif, umumnya digunakan untuk menyederhanakan konsep arus listrik.
Medan listrik:
Medan listrik diciptakan oleh muatan yang menghasilkan gaya pada muatan lain di sekitarnya. Medan listrik bekerja serupa dengan medan gravitasi, tetapi dapat menghasilkan tarikan atau tolakan tergantung pada polaritas muatan. Medan listrik didefinisikan dalam gaya dan memiliki besaran serta arah.
Potensial listrik:
Potensial listrik adalah energi yang dibutuhkan untuk membawa sebuah muatan dari jarak tak terhingga ke suatu titik dalam medan listrik. Dalam praktiknya, perbedaan potensial listrik antara dua titik tertentu yang paling sering digunakan. Potensial listrik diukur dalam satuan volt dan didefinisikan terhadap titik referensi, yang seringkali adalah permukaan bumi.
Elektromagnet:
Hubungan antara listrik dan magnet ditemukan oleh Ørsted pada tahun 1821. Interaksi antara medan magnet dan arus membentuk dasar dari elektromagnetisme. Fenomena ini menghasilkan penemuan motor listrik oleh Michael Faraday, yang menunjukkan bahwa medan magnet dapat menghasilkan gaya pada arus, dan sebaliknya.
Elektrokimia:
Elektrokimia merupakan studi tentang interaksi antara listrik dan reaksi kimia. Sel elektrokimia, seperti baterai dan sel elektrolisis, memiliki peran penting dalam berbagai aplikasi, termasuk produksi aluminium dan pengisian ulang peralatan listrik.
Rangkaian listrik:
Rangkaian listrik adalah gabungan komponen listrik yang membentuk jalur tertutup bagi muatan listrik untuk berpindah, sering digunakan untuk mencapai tujuan tertentu. Komponen-komponen tersebut bisa beragam, mulai dari resistor, kapasitor, sakelar, transformator, hingga elektronika. Rangkaian listrik terdiri dari komponen aktif, seperti semikonduktor, yang seringkali memiliki perilaku non-linear dan membutuhkan analisis yang kompleks.
Tenaga listrik:
Tenaga listrik merupakan kecepatan perpindahan energi listrik melalui rangkaian listrik, diukur dalam watt. Pembangkit listrik umumnya menggunakan generator listrik atau sumber kimia seperti baterai.
Elektronika:
Elektronika berkaitan dengan rangkaian listrik yang mengandung komponen aktif seperti tabung vakum, transistor, dan dioda. Elektronika memungkinkan pengolahan informasi, telekomunikasi, dan pemrosesan sinyal, serta memfasilitasi kemungkinan penguatan sinyal lemah dan pemrosesan informasi digital.
Gelombang Elektromagnetik
Gelombang elektromagnetik, pertama kali dikaji oleh Faraday dan Ampère, merupakan fenomena di mana perubahan medan magnet menghasilkan medan listrik, dan sebaliknya. Gelombang elektromagnetik dipelajari oleh James Clerk Maxwell, yang menemukan bahwa gelombang ini dapat bergerak dengan kecepatan cahaya dan bahwa cahaya adalah bentuk radiasi elektromagnetik. Hukum Maxwell adalah salah satu pencapaian penting dalam fisika teoretis karena menggabungkan cahaya, medan, dan muatan dalam satu kerangka kerja yang konsisten.
Produksi dan penggunaan
Produksi dan penggunaan listrik telah mengalami perkembangan signifikan sepanjang sejarah, dimulai dari eksperimen Thales pada abad ke-6 SM hingga pembangunan pembangkit listrik modern. Penemuan tumpukan volta pada abad ke-18 dan penggunaan baterai listrik membawa revolusi dalam penyediaan tenaga listrik yang mudah digunakan. Namun, untuk memenuhi kebutuhan energi yang besar, diperlukan pembangkitan listrik secara kontinu melalui generator mekanik-listrik yang mengandalkan berbagai sumber energi, seperti pembakaran bahan bakar fosil, panas dari reaksi nuklir, serta energi kinetik dari angin atau air mengalir.
Dengan ditemukannya turbin uap modern oleh Sir Charles Parsons pada tahun 1884, sekitar 80% tenaga listrik dunia saat ini dihasilkan dari berbagai sumber panas. Kemajuan ini memungkinkan transmisi listrik yang lebih efisien melalui tegangan tinggi namun arus rendah. Dalam konteks ini, utilitas listrik bertanggung jawab untuk memprediksi beban listrik dan menjaga koordinasi dengan stasiun pembangkit untuk memastikan ketersediaan listrik yang cukup.
Permintaan akan listrik terus meningkat seiring dengan modernisasi dan pertumbuhan ekonomi. Hal ini mengakibatkan fokus yang meningkat pada pembangkitan listrik dari sumber energi terbarukan, seperti angin dan air, untuk mengatasi kekhawatiran lingkungan.
Di sisi penggunaan, listrik telah menjadi sumber energi yang sangat penting dan mudah digunakan dalam berbagai aplikasi. Mulai dari penerangan dengan lampu pijar hingga pemanas listrik dan peralatan elektronik, listrik telah menggantikan sumber energi lainnya dalam banyak kasus. Penggunaan listrik juga sangat signifikan dalam telekomunikasi, transportasi, dan industri. Inovasi seperti motor listrik dan transistor telah mengubah lanskap teknologi modern, memberikan efisiensi dan keandalan yang lebih baik dalam berbagai aplikasi.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025
Jaringan komputer (Computer Network) adalah sekelompok komputer yang berbagi sumber daya yang terletak di atau disediakan oleh node jaringan. Komputer menggunakan protokol komunikasi standar untuk berkomunikasi satu sama lain melalui tautan digital. Koneksi ini terdiri dari teknologi jaringan telekomunikasi berdasarkan metode frekuensi radio kabel fisik, optik dan nirkabel yang dapat diatur dalam topologi jaringan yang berbeda.
Node dalam jaringan komputer dapat mencakup komputer pribadi, server, perangkat jaringan, atau host khusus atau umum lainnya. Mereka diidentifikasi berdasarkan alamat email dan mungkin memiliki nama host. Nama host adalah label yang mudah diingat untuk node dan jarang diubah setelah pengaturan awal. Alamat jaringan digunakan untuk mencari dan mengidentifikasi node menggunakan protokol komunikasi seperti Protokol Internet.
Jaringan komputer dapat diklasifikasikan menurut banyak kriteria, termasuk media transmisi yang digunakan untuk mengirimkan sinyal, bandwidth, protokol komunikasi untuk mengatur lalu lintas jaringan, ukuran jaringan, topologi, mekanisme kontrol lalu lintas, dan tujuan organisasi. Komputer. jaringan mendukung banyak aplikasi dan layanan seperti akses Internet, video dan audio digital, berbagi aplikasi dan server penyimpanan, printer dan faks, serta menggunakan email dan pesan instan.
Topologi jaringan umum.
Sejarah singkat
Jaringan komputer dapat dianggap sebagai subdisiplin ilmu komputer, teknologi informasi dan telekomunikasi karena didasarkan pada penerapan teoritis dan praktis dari disiplin ilmu terkait. Jaringan komputer telah dipengaruhi oleh berbagai macam perkembangan teknologi dan tonggak sejarah.
Penggunaan
Jaringan komputer memperluas komunikasi antara orang-orang secara elektronik menggunakan berbagai teknologi seperti email, pesan instan, obrolan online, panggilan suara dan video, dan konferensi video. Jaringan memungkinkan berbagi sumber daya jaringan dan komputasi. Pengguna dapat mengakses dan mengakses sumber daya yang disediakan oleh perangkat jaringan, seperti mencetak dokumen ke printer jaringan bersama atau menggunakan perangkat penyimpanan bersama. Jaringan memungkinkan berbagi file, data, dan jenis informasi lainnya dengan mengizinkan pengguna yang berwenang untuk mengakses informasi yang disimpan di komputer lain di jaringan. Komputasi terdistribusi menggunakan sumber daya komputer untuk melakukan tugas melalui jaringan.
Network packet
Network Packet.
Sebagian besar jaringan komputer modern menggunakan protokol berdasarkan transmisi berbasis paket. Paket jaringan adalah unit data terformat yang dibawa melalui jaringan packet-switched. Paket terdiri dari dua jenis data: data kontrol dan data pengguna (payload). Informasi kontrol berisi data yang dibutuhkan jaringan untuk mengirimkan informasi pengguna, seperti alamat jaringan sumber dan tujuan, kode kesalahan, dan informasi urutan. Biasanya, informasi kontrol ditemukan di header paket dan trailer dengan informasi berguna di antaranya.
Paket dapat mendistribusikan bandwidth media transmisi dengan lebih baik antar pengguna dibandingkan jika jaringan dialihkan. Jika salah satu pengguna tidak mengirimkan paket, link tersebut dapat diisi dengan paket dari pengguna lain, sehingga biaya dapat ditanggung bersama dengan gangguan yang relatif sedikit, selama link tersebut tidak banyak digunakan. Seringkali, rute yang harus diambil paket melalui jaringan tidak segera tersedia. Dalam hal ini, paket dimasukkan ke dalam antrian dan menunggu hingga link tersedia.
Teknologi tautan fisik dalam jaringan paket biasanya membatasi ukuran paket hingga unit transmisi maksimum (MTU) tertentu. Pesan yang lebih panjang dapat dipecah-pecah sebelum dikirim, dan ketika paket tiba, paket-paket tersebut disusun kembali untuk membentuk pesan asli.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
Jurusan Teknik Elektro sering kali terabaikan oleh calon mahasiswa meskipun menawarkan peluang karier yang luas. Banyak yang menganggap lulusan Teknik Elektro hanya akan terlibat dalam perbaikan listrik, padahal bidang ini memiliki dampak yang signifikan dalam kehidupan sehari-hari. Lulusan Teknik Elektro memiliki prospek karier yang beragam di berbagai industri.
Teknik Elektro mempelajari aplikasi listrik dalam kehidupan sehari-hari, yang mencakup konsep dasar Fisika, Kimia, dan Matematika yang dipelajari sejak SMA. Namun, di jurusan ini, pemahaman tentang fisika diperluas dengan mempelajari berbagai aspek seperti interaksi komponen listrik, medan elektromagnetik, dan teknik digital listrik serta elektronika. Selain itu, mahasiswa juga akan mempelajari bahan-bahan listrik, energi kontroversial, pengukuran beban listrik, dan sistem telekomunikasi, serta mata kuliah matematika teknik dan metode numerik.
Sejumlah perguruan tinggi menawarkan jurusan Teknik Elektro, mulai dari Institut Teknologi Bandung (ITB), Universitas Indonesia (UI), Universitas Gadjah Mada (UGM), hingga institusi swasta seperti Universitas Telkom dan Universitas Kristen Petra.
Peluang karier lulusan Teknik Elektro sangat luas. Mereka dapat bekerja di industri pembangkit listrik seperti PLTA dan PLTU, industri telekomunikasi, perminyakan dan gas, hingga industri otomotif. Selain itu, lulusan juga dapat bekerja di sektor pemerintahan, perusahaan multinasional, dan bahkan memilih jalur menjadi dosen atau wirausaha. Keahlian mereka juga dibutuhkan dalam bidang software engineering, baik untuk perusahaan besar maupun start-up. Dengan demikian, Jurusan Teknik Elektro menawarkan beragam peluang karier yang menarik bagi calon mahasiswa yang tertarik dalam bidang listrik.
Sumber: edukasi.kompas.com
Teknik Elektro
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
Bandwidth merupakan salah satu istilah yang sering kali terdengar dalam konteks internet. Bagi banyak orang, bandwidth seringkali diartikan sebagai kecepatan jaringan internet, yang dinyatakan dalam satuan bits per second (bps) seperti Mbps (Megabits per second), Kbps (Kilobits per second), dan lain sebagainya.
Namun, sebenarnya istilah "bandwidth" sendiri memiliki arti yang lebih luas, yakni sebagai lebar pita. Meskipun sering dihubungkan dengan kecepatan internet, secara bahasa, bandwidth sebenarnya tidak merujuk langsung pada kecepatan, melainkan pada kapasitas atau volume suatu jaringan internet untuk menerima dan mengirim data per detik.
Anda bisa membayangkan bandwidth layaknya sebuah pipa yang digunakan untuk mengalirkan air dari satu tempat ke tempat lain. Pipa tersebut memiliki volume tertentu yang dapat menentukan seberapa cepat air dapat mengalir. Demikian pula dengan bandwidth, semakin besar kapasitas atau volume jaringan internet, semakin cepat pula data dapat ditransfer.
Bandwidth juga dapat diartikan sebagai kuota maksimum dari data yang dapat ditransfer per detik dalam sebuah jaringan internet. Meskipun mirip dengan kecepatan internet, namun keduanya memiliki perbedaan mendasar. Kecepatan internet merujuk pada tingkat kecepatan transfer data, sementara bandwidth adalah kapasitas atau kuota maksimum yang dapat ditransfer.
Sebagai contoh, jika Anda memiliki jaringan internet WiFi dengan kecepatan transfer data hingga 10 Mbps, dan ingin mengakses layanan internet di lima perangkat secara bersamaan, maka kecepatan transfer data akan dibagi rata di antara kelima perangkat tersebut. Artinya, masing-masing perangkat dapat mengakses layanan dengan kecepatan sekitar 2 Mbps, sesuai dengan kuota maksimum bandwidth-nya.
Dari penjelasan di atas, dapat disimpulkan bahwa bandwidth memiliki beberapa fungsi penting dalam mengatur jaringan internet. Salah satunya adalah sebagai jalur transfer data yang menghubungkan berbagai perangkat untuk menjalankan transfer data. Selain itu, fungsi lainnya adalah untuk membatasi kecepatan transfer data, yang umumnya digunakan oleh administrator atau pemilik koneksi internet untuk menjaga agar kecepatan transfer data tetap optimal.
Sumber: tekno.kompas.com
Teknik Elektro
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
Program Studi Teknik Biomedik ini merupakan program studi yang menggabungkan bidang ilmu keteknikan dan kedokteran, dimana pada program studi ini akan dipelajari bagaimana merancang alat-alat mekanis dan elektronis untuk membantu dunia dunia medis. Secara garis besar, Teknik Biomedis ini mempelajari sistem elektronika kedokteran dan teknologi kesehatan. Prospek kerja jurusan Teknik Biomedis ini semakin cerah melihat perkembangan teknologi kesehatan dari tahun ke tahun yang semakin meningkat, apalagi perguruan tinggi yang memiliki prodi Teknik Biomedik masih sangat sedikit jumlahnya di Indonesia sehingga persaingan dunia kerja pada bidang teknik biomedis khususnya di Indonesia masih tidak terlalu ketat.
Lulusan teknik biomedis diharapkan dapat membantu mengembangkan industri alat-alat medis di Indonesia, sehingga ketergantungan negeri ini akan industri tersebut terhadap negara-negara maju dapat terus menerus dikurangi tiap tahunnya. Luaran akhir yang diharapkan khususnya bagi NKRI dengan adanya program studi ini adalah tercapainya kemandirian Indonesia di bidang industri alat-alat medis.
Berikut beberapa prospek kerja bagi lulusan teknik biomedis di Indonesia:
Laboratorium Kesehatan: Di laboratorium kesehatan, pengetahuan tentang alat-alat medis yang dimiliki oleh lulusan Teknik Biomedis sangatlah penting untuk melaksanakan penelitian yang bermanfaat bagi pasien dan masyarakat.
Rumah Sakit (Pemerintah atau Swasta): Rumah sakit sebagai pusat pelayanan kesehatan adalah pengguna utama teknologi alat-alat medis. Lulusan Teknik Biomedis dibutuhkan sebagai konsultan untuk pembelian alat-alat medis yang berkualitas dan juga sebagai teknisi yang merawat alat-alat tersebut.
Perusahaan Obat/Farmasi: Di perusahaan farmasi, lulusan Teknik Biomedis dapat bekerja dalam tugas-tugas pemeliharaan, operasional, atau pengendalian kualitas alat-alat yang digunakan dalam produksi obat-obatan.
Lembaga Penelitian: Lulusan Teknik Biomedis dapat bekerja di lembaga penelitian untuk melakukan penelitian yang berkaitan dengan alat-alat medis, yang kemudian dapat bermanfaat untuk pengetahuan kesehatan dalam dan luar negeri.
Instansi Pemerintahan: Di instansi pemerintahan seperti Kementerian Kesehatan atau Dinas Kesehatan, lulusan Teknik Biomedis dapat bekerja sesuai dengan kompetensinya dalam bidang Teknik Biomedis.
Tenaga Pendidik: Lulusan Teknik Biomedis juga memiliki peluang untuk menjadi dosen, terutama dengan sedikitnya jumlah Program Studi Teknik Biomedis di perguruan tinggi Indonesia.
Wirausaha: Sebagai alternatif, lulusan Teknik Biomedis dapat memilih untuk menjadi pengusaha dengan mendirikan perusahaan yang memproduksi alat-alat medis. Dengan pengetahuan dan keterampilan yang dimilikinya, hal ini merupakan peluang yang layak dipertimbangkan, terutama karena mayoritas alat-alat medis di Indonesia masih diimpor dari luar negeri.
Sumber: biomedik.eng.ui.ac.id