Kualitas
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 10 April 2025
Pendahuluan: Mengapa Software SPC Menjadi Kunci Produktivitas di Manufaktur?
Dalam lanskap manufaktur modern yang didorong oleh data, peningkatan kualitas dan efisiensi produksi menjadi hal mutlak. Namun, mengandalkan metode manual dalam pengendalian proses produksi sering kali menyebabkan keterlambatan dalam deteksi cacat produk, bahkan pemborosan sumber daya. Oleh karena itu, penggunaan Statistical Process Control (SPC) berbasis software menjadi jawaban atas tantangan ini.
Penelitian yang dilakukan oleh Ifekoya dan Simolowo dari University of Ibadan, Nigeria, memaparkan tentang pengembangan Computer-based Statistical Process Control (CSPC) yang dirancang untuk meningkatkan efisiensi analisis data kualitas dan mempercepat proses pengambilan keputusan dalam lini produksi. Studi kasus utamanya adalah di Coca-Cola Bottling Company, menjadikan penelitian ini relevan dan aplikatif bagi industri serupa.
Mengapa Statistical Process Control (SPC) Masih Relevan?
Konsep Dasar SPC
SPC adalah metode pengendalian kualitas berbasis statistik yang digunakan untuk memantau dan mengendalikan proses produksi secara real-time. Alat utama dalam SPC adalah control chart, yang membantu mendeteksi variasi proses sebelum produk cacat dihasilkan.
Tantangan Implementasi SPC Manual
Meskipun SPC efektif, metode manualnya sering kali memakan waktu, membosankan, dan rawan kesalahan manusia. Hal ini menjadi motivasi utama bagi para peneliti untuk mengembangkan software SPC yang lebih cepat, akurat, dan mudah digunakan.
Tujuan dan Kontribusi Penelitian
Penelitian ini bertujuan untuk:
Metodologi Penelitian: Dari Desain hingga Implementasi
Pengembangan Software SPC
Studi Kasus di Coca-Cola Bottling Company
Temuan Kunci: Dari Data ke Keputusan Strategis
Hasil Analisis Mean dan Range
Process Capability (Cp)
Analisis Tambahan: Apa yang Bisa Dipelajari Industri Lain?
Manfaat CSPC untuk Industri Manufaktur
Contoh Industri yang Bisa Mengadopsi CSPC
Kritik dan Evaluasi Penelitian
Kelebihan
Keterbatasan
Keterkaitan dengan Tren Industri 4.0 dan 5.0
IoT dan Big Data dalam SPC
Pengembangan CSPC bisa diperluas dengan sensor IoT yang mengumpulkan data secara real-time. Ini memungkinkan:
AI dan Machine Learning
Dengan menambahkan algoritma machine learning, software SPC bisa:
Rekomendasi Implementasi untuk Industri Manufaktur di Indonesia
Kesimpulan: CSPC sebagai Solusi Transformasi Digital dalam Quality Control
Penelitian Ifekoya dan Simolowo membuktikan bahwa penerapan Computer-based SPC dapat meningkatkan efisiensi, akurasi, dan produktivitas di industri manufaktur. Tidak hanya mengurangi waktu analisis, CSPC juga membantu mendeteksi penyimpangan lebih cepat, memberikan solusi praktis bagi manajemen, dan meningkatkan kualitas produk secara konsisten.
✅ Manfaat Utama CSPC:
❗ Tantangan:
Referensi:
Ifekoya, I. A., & Simolowo, O. E. (2018). The Development and Application of Statistical Process Control Software for Higher Productivity in Manufacturing Companies. African Journal of Applied Research, 4(1), 1–13.
Kualitas
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 10 April 2025
Pendahuluan: Menjawab Tantangan Kontrol Kualitas di Industri Modern
Dalam dunia manufaktur modern, kendali mutu atau quality control tidak hanya sebatas memastikan produk memenuhi standar, tetapi juga berkaitan dengan efisiensi proses produksi. Namun, satu tantangan besar yang kerap dihadapi adalah keragaman data produksi, terutama ketika data tersebut tidak mengikuti distribusi normal yang menjadi asumsi utama dalam metode SPC konvensional.
Dalam konteks ini, tesis Daniel Lanhede memberikan solusi inovatif melalui Non-parametric Statistical Process Control (SPC), yang tidak bergantung pada asumsi distribusi tertentu. Paper ini mengulas metode non-parametrik yang dirancang untuk mendeteksi perubahan dalam distribusi proses manufaktur, bahkan pada volume produksi yang rendah, seperti di GE Healthcare Umeå, yang memproduksi sistem kromatografi Äkta Pure dan Äkta Avant.
Gambaran Umum Non-parametric SPC: Apa yang Membuatnya Unggul?
Mengapa Non-parametric?
Kebanyakan metode SPC klasik, seperti Shewhart Chart, CUSUM, dan EWMA, memerlukan data yang berdistribusi normal. Jika data produksi tidak memenuhi syarat ini, metode klasik bisa memberikan hasil yang bias, baik berupa alarm palsu (false alarm) atau gagal mendeteksi masalah.
Non-parametric SPC menawarkan pendekatan yang fleksibel, karena:
Objektif Penelitian: Implementasi SPC di GE Healthcare
Penelitian ini bertujuan:
Metode Penelitian: Dari Teori ke Penerapan
Fokus pada Dua Tahap SPC
Selain itu, Change-Point Model berbasis Cramer-Von Mises Statistic juga diusulkan untuk mendeteksi perubahan distribusi secara lebih cepat.
Studi Kasus di GE Healthcare: Penerapan di Produksi Äkta Series
1. Valve Leakage Test
2. Pump Flow Rate Test
Temuan Kunci dan Statistik Pendukung
Analisis Tambahan: Kelebihan dan Kekurangan Non-parametric SPC
Kelebihan
Kekurangan
Relevansi dan Implikasi di Era Industri 4.0
Penelitian ini sangat relevan dalam konteks Industri 4.0, di mana data driven manufacturing menjadi kunci keberhasilan. Non-parametric SPC melengkapi IoT dan Big Data Analytics, terutama dalam:
Kritik dan Saran: Menggali Lebih Dalam Potensi Non-parametric SPC
Kritik
Saran Pengembangan
Kesimpulan: Non-parametric SPC, Solusi Masa Depan untuk Kualitas Produksi
Penelitian Daniel Lanhede membuktikan bahwa Non-parametric SPC adalah alternatif andal bagi industri manufaktur dengan variasi data tinggi dan volume produksi rendah. Implementasi metode seperti RS/P Chart, Mann-Whitney, dan Mood’s Test membuka jalan bagi manufaktur presisi tinggi, bahkan dalam kondisi paling menantang.
Sumber:
Lanhede, D. (2015). Non-parametric Statistical Process Control: Evaluation and Implementation of Methods for Statistical Process Control at GE Healthcare, Umeå (Master's thesis). Umeå University, Department of Mathematics and Mathematical Statistics.
Kualitas
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 10 April 2025
Pendahuluan: Mengapa EIDA Penting di Era Industri 4.0?
Di era Industri 4.0, teknologi berbasis data mendominasi hampir seluruh aspek produksi. Proses pengumpulan data tidak lagi terbatas pada angka, melainkan telah meluas ke data gambar yang diambil dari berbagai sistem sensor dan kamera di lini produksi. Namun, tantangan utamanya adalah bagaimana memanfaatkan data gambar ini untuk menghasilkan hipotesis perbaikan kualitas yang berbobot.
Paper ini menawarkan solusi melalui Exploratory Image Data Analysis (EIDA). EIDA merupakan pendekatan eksplorasi data gambar secara sistematis yang bertujuan untuk menemukan pola tersembunyi dan mendukung proses pengambilan keputusan berbasis data, khususnya untuk kualitas produksi.
Apa itu EIDA dan Bagaimana Cara Kerjanya?
Konsep Dasar EIDA
EIDA adalah turunan dari Exploratory Data Analysis (EDA) yang pertama kali diperkenalkan oleh John Tukey (1977). Bedanya, EIDA fokus pada data berbasis gambar. Tujuan utamanya adalah membangkitkan hipotesis tentang variabel penyebab masalah kualitas melalui analisis gambar, yang kemudian dapat dikonfirmasi melalui analisis data lanjutan.
Empat Langkah Utama dalam EIDA:
Studi Kasus Penerapan EIDA: Dari Teori ke Praktik
1. Laser Welding Quality Analysis
Dalam studi laser welding, data dari 20 gambar penampang pengelasan aluminium alloy dianalisis. Masing-masing gambar dipecah menjadi 200 piksel dalam format grayscale sederhana, cukup untuk mendeteksi ketidaksesuaian proses pengelasan. Dengan menerapkan LDA, peneliti menemukan lima topik utama, salah satunya undercut, yang menjadi masalah dominan (43%).
👉 Insight: Dengan mengurangi daya laser, potensi kegagalan undercut dapat diminimalisasi secara signifikan.
2. Body-in-White (BIW) Dimensional Study
EIDA juga diaplikasikan dalam pengukuran dimensi gap dan flush pintu mobil. Pengolahan gambar dari kamera mengungkapkan deviasi signifikan di bagian atas pintu (gap yang terlalu sempit) dan mengidentifikasi sumber masalah dari distorsi fixture robotic cell, bukan dari proses perakitan itu sendiri.
👉 Insight: Penerapan EIDA membantu fokus pada akar masalah, bukan hanya efek permukaannya.
3. Pipeline Defect Detection
Sekitar 2.500 gambar dinding pipa diperiksa menggunakan Haar Wavelet Transform. EIDA mampu membedakan area pipa normal, cacat, dan bagian struktural lainnya secara efisien. Ini memungkinkan prediksi dini kerusakan pipa yang sebelumnya sulit terdeteksi.
👉 Insight: Deteksi berbasis EIDA dapat digunakan untuk pemeliharaan prediktif dalam industri migas.
Analisis Kelebihan dan Kekurangan EIDA dalam Konteks Industri
Kelebihan
Kekurangan
Relevansi EIDA dengan Tren Industri Terkini
Di era Industri 4.0, EIDA menjadi komplementer untuk sistem kontrol kualitas berbasis Internet of Things (IoT) dan Machine Learning (ML).
➡️ Sebagai contoh: Data dari kamera inspeksi di lini produksi bisa diintegrasikan dengan sistem EIDA untuk diagnosis awal, lalu hasilnya digunakan untuk pelatihan model prediksi kegagalan berbasis AI.
Bahkan di Industri 5.0, di mana kolaborasi manusia-mesin diutamakan, EIDA memberi kendali interpretatif yang membuat keputusan berbasis data lebih manusiawi dan transparan.
Perbandingan dengan Penelitian Lain di Bidang Ini
1. EIDA vs Deep Learning
Deep learning sering digunakan untuk pengenalan pola otomatis dalam gambar, namun tidak menjelaskan mengapa sebuah pola dianggap penting. EIDA justru sebaliknya, memfasilitasi hipotesis sebab-akibat, mendukung proses continuous improvement.
2. EIDA vs Six Sigma DMAIC
Metode Six Sigma fokus pada siklus Define, Measure, Analyze, Improve, Control (DMAIC). EIDA bisa masuk di tahap Analyze, memberikan visualisasi awal sebelum dilakukan pengujian statistik formal.
Rekomendasi Penerapan EIDA di Industri Indonesia
Industri Manufaktur Otomotif
Industri Minyak dan Gas
Industri Tekstil
Simpulan: EIDA Sebagai Jembatan Menuju Kualitas Produksi yang Lebih Baik
Paper ini menawarkan framework sederhana, transparan, dan aplikatif dalam mengelola data gambar untuk peningkatan kualitas produksi. Dalam dunia industri yang semakin kompleks, EIDA bisa menjadi solusi bridging antara teknologi visual tradisional dengan sistem analytics modern.
✅ Nilai Tambah EIDA:
Sumber:
Exploratory image data analysis for quality improvement. (2023). Quality Engineering.
Kualitas
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 10 April 2025
Pendahuluan: Evolusi Industri Menuju Era Digital
Dalam beberapa dekade terakhir, dunia manufaktur telah mengalami lonjakan besar dalam penggunaan teknologi. Transformasi digital, yang dikenal sebagai ,Industri 40. telah merevolusi cara perusahaan memproduksi barang, mengelola operasi, dan bersaing di pasar global. Di tengah perubahan ini, pengendalian kualitas menjadi semakin penting. Paper berjudul Industry 4.0 and Smart Systems in Manufacturing: Guidelines for the Implementation of a Smart Statistical Process Control karya Lucas Schmidt Goecks, Anderson Felipe Habekost, Antonio Maria Coruzzolo, dan Miguel Afonso Sellitto membahas secara komprehensif bagaimana Smart Statistical Process Control (SSPC) menjadi komponen vital dalam mewujudkan pabrik pintar.
Mengapa Smart SPC Diperlukan di Era Industri 4.0?
Statistical Process Control (SPC) Tradisional
SPC tradisional bergantung pada pengumpulan data manual dan analisis statistik secara periodik. Sistem ini cukup efektif untuk memantau dan mengendalikan proses berbasis data historis. Namun, dalam lingkungan manufaktur yang semakin kompleks dan cepat, metode ini sering kali terlambat dalam mendeteksi masalah atau membuat penyesuaian.
Smart SPC (SSPC): Transformasi Sistem Pengendalian Kualitas
SSPC adalah versi modern dari SPC yang memanfaatkan teknologi Internet of Things (IoT), Artificial Intelligence (AI), dan Machine Learning (ML). Sistem ini memungkinkan pemantauan data secara real-time, prediksi gangguan, dan pengambilan keputusan otomatis.
SSPC bertindak tidak hanya sebagai alat pemantauan tetapi juga pengendali aktif proses produksi. Ini sejalan dengan konsep Cyber-Physical Systems (CPS), yang menghubungkan dunia fisik dan digital untuk menciptakan sistem manufaktur yang adaptif dan otonom.
Framework Implementasi Smart SPC yang Ditawarkan dalam Paper
Penelitian ini mengusulkan framework berbasis metode Design Science Research (DSR). Model ini dirancang fleksibel agar dapat diterapkan di berbagai jenis industri manufaktur. Pendekatan DSR digunakan untuk merancang, mengembangkan, dan mengevaluasi SSPC, yang dipecah dalam beberapa tahap penting:
Aplikasi Nyata SSPC: Dari Teori ke Praktik
Penulis menghadirkan contoh penerapan SSPC di lingkungan produksi modern. Mereka menyoroti bagaimana integrasi ERP dan CPS menjadi tulang punggung pengendalian mutu berbasis data secara real-time.
🔧 Komponen Penting dalam Implementasi SSPC:
📈 Hasil yang Diharapkan:
Kelebihan Framework SSPC yang Ditawarkan
Tantangan Implementasi Smart SPC
Tidak semua hal berjalan mulus dalam implementasi SSPC. Penulis mengidentifikasi tantangan utama yang dihadapi industri, antara lain:
Opini Penulis: SSPC di Industri Indonesia
Implementasi SSPC di Indonesia masih minim, meskipun potensinya sangat besar. Industri seperti manufaktur otomotif, tekstil, dan makanan-minuman adalah kandidat ideal untuk menerapkan SSPC. Namun, ada beberapa catatan:
Perbandingan dengan Penelitian Serupa
Beberapa studi sebelumnya, seperti oleh Guh (2003) dan Jiang (2012), juga membahas integrasi AI dalam SPC. Namun, paper ini lebih komprehensif karena:
Masa Depan SSPC dan Industri 4.0
SSPC akan menjadi komponen utama dalam mewujudkan Quality 4.0, di mana kualitas tidak hanya menjadi tanggung jawab satu departemen, melainkan bagian dari strategi perusahaan secara keseluruhan. Beberapa tren masa depan:
Kesimpulan: SSPC Bukan Lagi Opsi, Tapi Keperluan
Implementasi SSPC di era Industri 4.0 adalah keharusan, bukan lagi pilihan. Framework yang ditawarkan Goecks dkk. menjadi panduan praktis bagi perusahaan manufaktur yang ingin bertransformasi digital tanpa kehilangan pijakan di dunia nyata.
✅ Keunggulan SSPC:
❗ Tantangan:
Bagi perusahaan Indonesia, investasi di SSPC akan menjadi strategi unggulan menghadapi persaingan global dan meningkatkan daya saing di pasar internasional.
Referensi:
Goecks, L.S.; Habekost, A.F.; Coruzzolo, A.M.; Sellitto, M.A. (2024). Industry 4.0 and Smart Systems in Manufacturing: Guidelines for the Implementation of a Smart Statistical Process Control. Applied System Innovation, 7(2), 24.
Kualitas
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 10 April 2025
Pendahuluan: Tantangan Kualitas Produk di Industri Anyaman Sintetis
Dalam dunia industri manufaktur furnitur, khususnya yang berbahan dasar rotan sintetis, kualitas produk menjadi elemen kunci dalam memenangkan pasar ekspor. Indonesia, sebagai salah satu produsen rotan sintetis terbesar di Asia Tenggara, dituntut untuk menghadirkan produk yang tidak hanya estetis, tetapi juga bebas cacat. Kegagalan mempertahankan standar kualitas dapat berdampak langsung pada kredibilitas perusahaan di pasar internasional.
PT.I, sebuah perusahaan penghasil furnitur rotan sintetis skala ekspor, menghadapi masalah yang cukup signifikan di lini produksi anyaman. Tingginya tingkat cacat pada produk menjadi perhatian utama perusahaan karena melebihi batas toleransi maksimal yang telah ditetapkan, yakni sebesar 5% dari total produksi. Kondisi ini mendorong perusahaan untuk melakukan analisis mendalam terhadap proses produksinya menggunakan pendekatan Statistical Process Control (SPC).
Paper ini, yang dipublikasikan dalam International Journal of Computer and Information System (IJCIS) Vol. 02, Edisi 03, Agustus 2021, mengulas bagaimana PT.I memanfaatkan SPC untuk mengidentifikasi, menganalisis, dan mengurangi produk cacat di bagian weaving atau anyaman.
Apa Itu SPC dan Kenapa Penting untuk Industri Furnitur?
Statistical Process Control (SPC) adalah metode pengendalian kualitas berbasis statistik yang berfungsi untuk memonitor dan mengontrol proses produksi secara sistematis. Tujuan utama dari SPC adalah mencegah cacat produk sejak proses produksi berlangsung, bukan sekadar mendeteksi cacat setelah produk selesai dibuat.
Dalam industri furnitur berbahan rotan sintetis seperti PT.I, proses weaving merupakan tahapan krusial yang sangat mempengaruhi kualitas akhir produk. Kesalahan sekecil apapun, seperti anyaman kendor, paku yang terlihat, atau perbedaan warna, akan dengan mudah terdeteksi oleh konsumen, khususnya di pasar ekspor yang mengutamakan presisi dan estetika produk.
Studi Kasus PT.I: Mengurai Masalah Kualitas di Lini Anyaman
Profil PT.I dan Permasalahan Produksi
PT.I adalah produsen furnitur berbahan rotan sintetis yang berorientasi ekspor. Perusahaan menawarkan berbagai model anyaman klasik dan modern yang menjadi daya tarik utama bagi pasar luar negeri. Namun, data menunjukkan bahwa tingkat cacat produk anyaman di PT.I melebihi ambang batas 5%. Pada Oktober 2020, tingkat cacat mencapai 12,8%, sementara pada November 2020 turun tipis menjadi 11,8%. Meski ada penurunan, kedua angka ini tetap melampaui batas toleransi perusahaan.
Jenis Cacat yang Sering Terjadi
Berdasarkan hasil inspeksi, terdapat lima jenis cacat utama yang ditemukan di bagian weaving PT.I:
Metodologi Analisis SPC di PT.I
Penelitian di PT.I menggunakan tujuh alat dasar dalam SPC untuk mengontrol kualitas produk:
Hasil Analisis SPC di PT.I: Temuan Kunci dan Interpretasi
Data Oktober 2020
Data November 2020
Korelasi Produksi dan Tingkat Cacat
Hasil scatter diagram menunjukkan adanya korelasi positif antara jumlah produksi dan tingkat cacat. Artinya, semakin tinggi produksi, semakin tinggi pula kemungkinan produk cacat. Hal ini menunjukkan adanya ketidakseimbangan antara kapasitas produksi dan kemampuan kontrol kualitas di lapangan.
Temuan P Control Chart
Peta kendali menunjukkan bahwa sebagian besar titik data berada di luar batas kendali. Ini mengindikasikan bahwa proses produksi PT.I tidak stabil secara statistik dan masih sering mengalami variasi penyebab khusus yang perlu segera diidentifikasi dan diatasi.
Akar Masalah Utama: Analisis Fishbone Diagram
Analisis sebab-akibat atau fishbone diagram mengidentifikasi empat faktor utama penyebab cacat produksi di PT.I:
Rekomendasi Perbaikan dan Dampak yang Diharapkan
Tindakan Korektif
Perbandingan dengan Studi Serupa di Industri Lain
Beberapa industri lain di Indonesia telah berhasil menerapkan SPC untuk mengatasi masalah serupa:
Kritik dan Catatan Tambahan: Apa yang Bisa Ditingkatkan?
Kelebihan Penelitian
Kekurangan Penelitian
Rekomendasi Tambahan
Mengintegrasikan teknologi Industri 4.0 seperti sensor IoT dan sistem monitoring berbasis cloud dapat meningkatkan efektivitas SPC. Sistem ini memungkinkan deteksi cacat secara real-time dan mengurangi keterlambatan pengambilan keputusan.
Kesimpulan: SPC Sebagai Pilar Pengendalian Kualitas Industri Furnitur Indonesia
Penelitian ini membuktikan bahwa penerapan Statistical Process Control (SPC) di PT.I berhasil mengidentifikasi titik-titik lemah dalam proses produksi anyaman. Meski tingkat cacat masih melebihi ambang batas perusahaan, langkah-langkah perbaikan yang direkomendasikan dapat menjadi solusi jangka panjang untuk menstabilkan kualitas produksi.
Dengan komitmen dari semua pihak, dari operator hingga manajemen puncak, serta adopsi teknologi baru, PT.I dapat meningkatkan daya saingnya di pasar ekspor furnitur rotan sintetis.
Referensi Utama:
Attaqwa, Y., Hamidiyah, A., & Ekoanindyo, F. (2021). Product Quality Control Analysis with Statistical Process Control (SPC) Method in Weaving Section (Case Study PT.I). International Journal of Computer and Information System (IJCIS), Vol. 02, Issue 03, Agustus 2021.
Kualitas
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 10 April 2025
Pendahuluan: Kenapa Pengendalian Kualitas Itu Penting?
Dalam dunia bisnis pangan, khususnya produk makanan olahan seperti roti, kualitas adalah segalanya. Konsumen tidak hanya mengharapkan rasa yang enak, tetapi juga standar mutu yang terjaga—baik dari segi bentuk, rasa, tekstur, hingga kebersihan. Jika kualitas tidak konsisten, bisnis bisa kehilangan kepercayaan konsumen, bahkan merugi secara finansial.
Salah satu pendekatan yang dapat diandalkan untuk menjaga dan meningkatkan kualitas produksi adalah Statistical Process Control (SPC). Dalam konteks industri pangan skala kecil hingga menengah di Indonesia, metode ini masih belum banyak dimanfaatkan secara optimal. Hal inilah yang diangkat dalam penelitian Tika Endah Lestari dan Nabila Soraya Rahmat, berjudul Analysis of Quality Control Using Statistical Process Control (SPC) in Bread Production, yang dipublikasikan di Indonesian Journal of Fundamental Sciences, Vol.4, No.2, Oktober 2018.
Mengenal SPC: Apa Itu dan Mengapa Relevan di Industri Pangan?
Statistical Process Control (SPC) merupakan metode statistik yang digunakan untuk memantau, mengontrol, dan meningkatkan proses produksi secara sistematis. Prinsip utama SPC adalah mendeteksi variasi dalam proses produksi—baik variasi yang wajar (common causes) maupun yang tidak wajar (special causes). Dengan begitu, potensi cacat produk bisa diidentifikasi dan dicegah sejak dini.
Dalam industri makanan seperti produksi roti, tantangan umumnya meliputi:
SPC memungkinkan perusahaan seperti Roti Sari Wangi untuk menjaga kualitas setiap batch produksi, meminimalkan produk cacat, serta meningkatkan efisiensi produksi.
Studi Kasus: Penerapan SPC di Roti Sari Wangi Bandung
Latar Belakang Produksi Roti Sari Wangi
Roti Sari Wangi adalah sebuah perusahaan roti berskala kecil di Bandung yang memproduksi delapan jenis roti setiap harinya, dengan kapasitas produksi mencapai 1.600 bungkus roti per hari. Dalam penelitian ini, penulis memfokuskan analisis pada empat jenis roti: roti coklat, kacang, keju, dan kacang hijau.
Masalah yang Dihadapi
Walaupun produksi berjalan setiap hari, tingkat produk cacat masih cukup tinggi, mencapai 1.434 bungkus roti cacat hanya dari empat varian roti yang diamati selama satu bulan (April 2018). Kerugian yang diakibatkan oleh roti cacat tersebut mencapai Rp 4.302.000 per bulan, hanya dari sebagian produksi saja. Jika diperluas ke seluruh jenis roti, potensi kerugian diperkirakan mencapai Rp 8.604.000 per bulan—angka yang sangat signifikan bagi UKM seperti Roti Sari Wangi.
Metode Pengendalian Kualitas: Penggunaan P-Chart
Dalam penelitian ini, penulis menggunakan metode P-Chart, salah satu alat dari SPC yang digunakan untuk mengontrol produk berdasarkan proporsi cacat (defect proportion). P-Chart sangat tepat digunakan ketika kita ingin mengamati produk yang hanya memiliki dua kondisi: baik atau cacat.
Proses Penerapan P-Chart:
Hasil Penelitian: Fakta di Balik Data
Berikut adalah temuan utama dari penelitian tersebut:
1. Roti Coklat
2. Roti Kacang
3. Roti Keju
4. Roti Kacang Hijau
Jika dikalkulasikan, total kerugian dari keempat produk mencapai Rp 4.302.000 per bulan. Ini setara dengan hampir 50% dari keuntungan bersih yang bisa didapatkan oleh perusahaan seukuran Roti Sari Wangi, menunjukkan bahwa produk cacat merupakan ancaman nyata bagi kelangsungan bisnis.
Analisis Mendalam dan Nilai Tambah: Apa yang Bisa Dipelajari?
Efektivitas P-Chart di Industri Makanan
Penerapan P-Chart di Roti Sari Wangi menunjukkan bahwa metode ini cukup efektif untuk mendeteksi proporsi produk cacat secara konsisten. Namun, penulis berpendapat bahwa perusahaan masih menghadapi tantangan dalam:
Bandingkan dengan Industri Sejenis
Di sektor industri roti modern seperti BreadTalk atau Rotiboy, sistem kontrol kualitas sudah diintegrasikan dengan IoT sensor yang mendeteksi suhu oven, kelembapan ruang produksi, hingga kesegaran bahan baku secara otomatis. Dengan teknologi ini, proporsi produk cacat bisa ditekan hingga di bawah 2%.
Di sisi lain, banyak UKM di Indonesia masih menggunakan metode manual, seperti yang dilakukan Roti Sari Wangi, yang mengandalkan tenaga manusia dalam inspeksi kualitas. Ini berpotensi menghadirkan bias dan inkonsistensi.
Kritik terhadap Penelitian dan Implikasi Praktis
Kelebihan Penelitian
Keterbatasan Penelitian
Rekomendasi untuk Roti Sari Wangi
Tren Industri: SPC Menuju Quality 4.0
Di era Industri 4.0, SPC semakin berkembang menuju Quality 4.0, di mana integrasi teknologi menjadi kunci utama. UKM seperti Roti Sari Wangi sebetulnya memiliki peluang untuk mengadopsi teknologi ini secara bertahap, seperti:
Penggunaan IoT untuk memantau variabel produksi.
Kesimpulan: SPC Bukan Sekadar Alat Statistik, Tapi Investasi Masa Depan
Penelitian Tika Endah Lestari dan Nabila Soraya Rahmat membuktikan bahwa SPC, khususnya P-Chart, mampu memberikan peta jalan untuk peningkatan kualitas di sektor industri pangan, termasuk UKM seperti Roti Sari Wangi. Meski sederhana, penerapan SPC bisa membantu pengusaha memahami celah dalam produksi, menekan kerugian, dan meningkatkan kepuasan pelanggan.
Namun, agar dampaknya lebih maksimal, perusahaan perlu mengembangkan budaya kualitas di semua lini, berinvestasi pada pelatihan SDM, serta secara bertahap mengadopsi teknologi terbaru. Dengan demikian, SPC bukan hanya menjadi alat pengawasan, melainkan juga fondasi pertumbuhan bisnis yang berkelanjutan.
Referensi Utama:
Lestari, T. E., & Rahmat, N. S. (2018). Analysis of Quality Control Using Statistical Process Control (SPC) in Bread Production. Indonesian Journal of Fundamental Sciences, 4(2), 90-101.