Kualitas Produksi
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025
Pendahuluan
Di era Industry 4.0, dunia manufaktur mengalami transformasi besar melalui digitalisasi. Salah satu inovasi yang mencuri perhatian adalah pemanfaatan machine learning (ML) dan deep learning (DL) untuk predictive quality, yaitu pendekatan prediktif terhadap kualitas produk berbasis data manufaktur. Paper ini mereview secara sistematis perkembangan riset di bidang tersebut selama satu dekade terakhir, yakni 2012 hingga 2021.
Riset ini relevan karena kebutuhan industri untuk memprediksi kualitas secara akurat semakin tinggi. Hal ini didorong oleh peningkatan permintaan konsumen atas produk berkualitas tinggi dan minim cacat. Teknologi ML dan DL diharapkan mampu membantu industri melakukan kontrol kualitas secara real-time, mengurangi cacat produksi, hingga meningkatkan efisiensi operasional.
Ruang Lingkup dan Metodologi Studi
Tercan dan Meisen melakukan telaah atas 81 publikasi ilmiah yang membahas predictive quality dalam ranah manufaktur. Mereka mengklasifikasikan penelitian tersebut berdasarkan:
Mereka merumuskan tiga pertanyaan utama yang menjadi kerangka studi:
Pendekatan sistematis ini mengisi celah dalam literatur karena hingga saat ini belum banyak ulasan komprehensif yang mengupas prediksi kualitas berbasis ML/DL secara mendalam.
Temuan Utama dan Analisis
1. Ragam Proses Manufaktur yang Diteliti
Berbagai proses manufaktur telah dikaji, mulai dari cutting (pemotongan) hingga additive manufacturing. Dari total publikasi yang direview, mayoritas riset fokus pada proses cutting (32%), seperti turning, drilling, dan milling. Fokus utamanya adalah memprediksi surface roughness (kekasaran permukaan), misalnya dalam proses laser cutting dan turning. Misalnya, penelitian oleh Tercan et al. (2017) yang memanfaatkan ML untuk memprediksi kekasaran permukaan pada laser cutting.
Proses joining, khususnya pengelasan, juga populer. Contohnya, penggunaan CNN untuk mendeteksi cacat las pada proses spot welding (Wang et al., 2021).
Studi Kasus Industri:
Perusahaan otomotif seperti BMW menggunakan sistem berbasis CNN untuk mendeteksi cacat pada bodi mobil selama proses spot welding. Implementasi ini meningkatkan first-pass yield hingga 98%.
2. Karakteristik Data dan Sumbernya
Prediksi kualitas mengandalkan data dari dua sumber utama:
Sebagian kecil lainnya menggunakan simulasi dan dataset benchmark seperti GRIMA X-Ray (Ferguson et al., 2018). Tantangan utama adalah kuantitas dan kualitas data. Banyak dataset eksperimen hanya terdiri dari ratusan sampel, yang membatasi akurasi model.
Tren Industri:
Penggunaan digital twin untuk menghasilkan data simulasi dalam skala besar kian populer. Misalnya, Siemens mengembangkan digital twin untuk simulasi additive manufacturing, memungkinkan mereka mengurangi waktu trial and error hingga 30%.
3. Jenis Data Input
Data input untuk model ML/DL umumnya berupa:
Pada proses seperti metal rolling, kamera lini digunakan untuk mendeteksi cacat permukaan secara otomatis melalui CNN.
Analisis:
Dalam praktik industri, penggabungan data multi-modal—gabungan antara sensor dan citra visual—semakin banyak diadopsi. Hal ini mencerminkan kebutuhan akan sistem prediksi yang lebih akurat dan fleksibel.
Model Machine Learning dan Deep Learning yang Digunakan
Mayoritas publikasi (74%) menggunakan model Multilayer Perceptron (MLP) karena kemudahannya dalam menangani berbagai jenis data numerik. Sementara itu, Convolutional Neural Networks (CNN) digunakan untuk analisis data gambar, seperti dalam inspeksi otomatis pada additive manufacturing.
Perbandingan Model:
Kritik:
Meski CNN mendominasi riset terkini, pendekatan ini kerap membutuhkan data dalam jumlah besar serta komputasi tinggi, yang belum tentu feasible bagi industri skala kecil-menengah.
Tantangan dan Kesenjangan Penelitian
Rekomendasi dan Arah Riset Masa Depan
Dampak Praktis Bagi Industri
Efisiensi Produksi
Dengan prediksi kualitas berbasis ML/DL, perusahaan manufaktur dapat mengurangi scrap rate hingga 40% dan meningkatkan efisiensi first-time-right production.
Pengurangan Biaya Inspeksi Manual
Prediksi otomatis memungkinkan pengurangan kebutuhan inspeksi manual hingga 50%, seperti yang dialami pabrik otomotif yang menerapkan CNN untuk deteksi cacat bodi mobil.
Kesimpulan
Tercan dan Meisen memberikan tinjauan yang komprehensif mengenai penerapan machine learning dan deep learning dalam prediksi kualitas manufaktur. Meski perkembangan pesat terlihat dalam dekade terakhir, masih ada tantangan signifikan yang harus diatasi. Ke depan, integrasi teknologi seperti XAI dan transfer learning menjadi kunci untuk memperluas adopsi sistem prediktif ini di industri manufaktur secara global.
📖 Referensi Utama
Tercan, H., & Meisen, T. (2022). Machine learning and deep learning based predictive quality in manufacturing: a systematic review. Journal of Intelligent Manufacturing, 33, 1879–1905.
Kualitas Produksi
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025
Dalam era Industri 4.0, pabrik pintar (smart factories) menjadi tulang punggung manufaktur modern. Keberhasilan mereka terletak pada efisiensi, fleksibilitas, dan kemampuan beradaptasi terhadap perubahan pasar yang cepat. Salah satu komponen kunci dalam mencapai tujuan tersebut adalah pengendalian kualitas (quality control) yang lebih proaktif dan berbasis data. Artikel ilmiah yang ditulis oleh Sidharth Sankhye dan Guiping Hu berjudul Machine Learning Methods for Quality Prediction in Production menghadirkan solusi inovatif melalui pendekatan machine learning (ML) untuk memprediksi kualitas produk secara lebih akurat dan efisien.
Latar Belakang: Dari Inspeksi Manual ke Prediksi Cerdas
Proses pengendalian kualitas tradisional umumnya bersifat reaktif. Produk diperiksa setelah diproduksi, dan ketika ditemukan cacat, baru dilakukan tindakan perbaikan. Model ini tidak hanya boros waktu, tetapi juga menimbulkan biaya tinggi akibat penarikan produk (recall) dan kerugian reputasi. Di sinilah machine learning hadir, menawarkan kemampuan prediktif yang memungkinkan perusahaan mendeteksi potensi cacat produk sejak dini.
Penelitian ini mengambil studi kasus dari lini produksi alat rumah tangga (appliance manufacturing), yang sebelumnya mengalami peningkatan jumlah cacat produk meskipun telah dilengkapi sistem visi dan scanner modern. Keterlambatan dalam mendeteksi masalah mengakibatkan biaya recall yang besar. Dengan memanfaatkan data yang ada, penulis membangun model prediksi kualitas berbasis machine learning, khususnya metode klasifikasi.
Intisari Penelitian: Membangun Model Prediksi Kualitas
Penelitian ini fokus pada penerapan metode supervised learning, yaitu klasifikasi, untuk memprediksi compliance quality produk. Proses prediksi kualitas produk didasarkan pada data yang dikumpulkan secara real-time dari proses produksi multi-tahap.
Beberapa temuan penting dari penelitian ini:
Studi Kasus: Transformasi Lini Produksi Alat Rumah Tangga
Dalam studi kasus yang diangkat, penulis menganalisis data produksi dari sebuah pabrik alat rumah tangga yang memproduksi sekitar 800 unit produk per hari. Data yang digunakan meliputi:
Masalah utama yang dihadapi adalah cacat produk berupa komponen salah pasang atau hilang, terutama setelah proses model changeover di lini produksi. Dengan produksi multi-model tanpa jeda, kemungkinan terjadinya kesalahan dalam proses perakitan meningkat.
Langkah-langkah Pengembangan Model
Insight Tambahan: Mengapa Feature Engineering Penting?
Feature engineering dalam studi ini memberikan keunggulan nyata. Salah satu fitur penting yang dikembangkan adalah batch_seq, yang menunjukkan urutan unit produksi setelah terjadi perubahan model. Dengan menambahkan atribut ini, model XGBoost mampu mengklasifikasi unit cacat dengan akurasi 98.34%, jauh lebih tinggi dibanding tanpa fitur tersebut.
Namun, upaya normalisasi fitur, seperti batch_seqperc (persentase posisi dalam batch), justru menunjukkan penurunan kinerja. Ini menunjukkan bahwa dalam konteks produksi, data absolut lebih bermakna daripada representasi relatif. Korelasi ini mencerminkan risiko tinggi cacat produk di awal batch setelah model changeover, terlepas dari ukuran batch.
Kelebihan Penelitian
Kritik dan Catatan untuk Pengembangan Lebih Lanjut
Meskipun hasilnya mengesankan, penelitian ini memiliki keterbatasan:
Dampak Praktis dan Tren Industri
Penelitian ini sangat relevan dengan konsep smart manufacturing dan proses quality assurance berbasis prediksi di era Industri 4.0. Dengan banyaknya Internet of Things (IoT) dan sensor di pabrik modern, data proses produksi semakin melimpah. Penelitian seperti ini menjadi fondasi penerapan Predictive Quality Analytics (PQA) yang meminimalkan biaya produksi dan meningkatkan kepuasan pelanggan.
Dalam konteks global, perusahaan seperti Siemens, GE, dan Bosch telah mulai mengadopsi pendekatan serupa dalam sistem mereka. Contohnya, Bosch menggunakan AI untuk memprediksi cacat pada lini perakitan elektronik, mengurangi scrap rate hingga 25%.
Kesimpulan: Menuju Masa Depan Manufaktur Bebas Cacat
Penelitian Sankhye dan Hu menunjukkan bahwa machine learning dapat diandalkan untuk memprediksi kualitas produk, bahkan dalam kondisi dataset yang tidak seimbang dan kompleks. Implementasi metode ini membawa perusahaan manufaktur lebih dekat ke zero-defect manufacturing, di mana kualitas produk terjamin tanpa harus mengandalkan inspeksi akhir semata.
Dengan peningkatan ketersediaan data produksi dan kemajuan algoritma, solusi berbasis machine learning akan menjadi standar baru dalam pengendalian kualitas industri modern.
Referensi
Sankhye, S., & Hu, G. (2020). Machine learning methods for quality prediction in production. Logistics, 4(4), 35.