Ilmu dan Teknik Material
Dipublikasikan oleh Muhammad Farhan Fadhil pada 29 Maret 2022
Dosen Institut Teknologi Bandung membuat produk panel anti peluru. Inovasi ini membawa Mardiyati raih penghargaan sebagai sebagai Inovator terbaik dalam PRIMA Award ITB 2021. PRIMA ITB merupakan penghargaan bidang penelitian, pengabdian masyarakat, inovasi dari LPPM ITB kerja sama dengan kantor Wakil Rektor bidang Riset dan Inovasi ITB.
Mardiyati mengatakan penghargaan ini semakin meningkatkan motivasi dirinya untuk melakukan yang lebih baik lagi di bidang inovasi. “Semakin meningkatkan motivasi saya untuk melakukan yang lebih baik lagi di bidang inovasi, sehingga nantinya produk-produk inovasi tersebut dapat menjadi produk yang turut memberikan solusi terhadap permasalahan yang kita hadapi bersama,” ucap Mardiyati seperti dilansir dari laman ITB.
Produk inovasi yang dihasilkan Mardiyati terbilang cukup banyak. Ada juga yang sudah dihilirasi oleh perusahaan rintisan binaan LPiK ITB. Salah satu inovasi terbaru Mardiyati bersama tim di tahun 2021adalah di bidang militer.
Inovasi yang dikembangkan tersebut adalah panel anti peluru dalam Modular Armor System Kapal Patroli. “Seperti yang kita tahu, negara kita adalah negara maritim dan diperlukan kapal patroli untuk menjaga pertahanan dan keamanannya.
Biasanya di ruang kemudi, lambung, dan mesin kapal, diberikan panel anti peluru untuk melindungi kapal patroli dari tembakan. Nah, biasanya modul anti peluru atau material untuk produk tersebut diimpor dari luar. Kita ingin ada kemandirian dalam hal tersebut,” ujarnya.
Dosen pada KK Ilmu dan Teknik Material, Fakultas Teknik Mesin dan Dirgantara ITB itu menjelaskan, produknya telah dilakukan pengujian tembak produk di PT Pindad (Persero), dengan mengacu pada Standar NIJ 0108.01 Level III dengan munisi 7.62 mm pada jarak tembak 5 meter. Sampel yang dibuat oleh tim lolos uji tembak dengan mengacu pada standar tersebut.
Ia pun berpesan untuk para inovator yakni menjalani hidup sebagai seorang inovator adalah suatu perjalanan yang menyenangkan dan penuh tantangan.
"Percayalah, bila niat kita bersungguh-sungguh untuk memberikan solusi terhadap permasalahan yang timbul di negeri ini dengan suatu karya inovasi, maka karya tersebut pasti akan sangat dinanti. Jangan pernah berhenti berinovasi untuk memberikan solusi. Kita hidup hanya satu kali dan semoga dengan karya inovasi, hidup kita akan menjadi sangat berarti,” tutupnya.
Sumber Artikel: kompas.com
Ilmu dan Teknik Material
Dipublikasikan oleh Muhammad Farhan Fadhil pada 29 Maret 2022
Setiap saat dan setiap detik dalam hidup kita, kita akan bersentuhan dengan apa yang disebut material. Saat bangun tidur kita memulai aktivitas dengan menggosok gigi. Sikat gigi yang kita gunakan terbuat dari material tertentu, pasta gigi nya pun terbuat dari material tertentu. Sebelum berangkat beraktivitas kita sarapan pagi terlebih dahulu. Peralatan makan yang kita gunakan, baik piring, sendok maupun garpu juga terbuat dari material tertentu misalnya plastik, keramik atau material lainnya. Jadi sebegitu dekat keterkaitan keilmuan Teknik Mineral dengan kehidupan manusia sehari-hari.
Program studi Teknik Material merupakan disiplin ilmu yang mempelajari tentang semua aspek yang berkaitan dengan struktur, sifat, dan karakteristik materi serta interaksinya. Oleh karena itu, seorang ahli Teknik Material akan mampu membuat dan merekayasa material sehingga dihasilkan material yang unggul dan berdaya-guna tinggi. Bidang keilmuan Teknik Material memiliki cakupan yang sangat luas karena mencakup semua hal yang berkaitan dengan keberadaan materi itu sendiri, baik yang sudah disediakan oleh alam maupun yang dikembangkan di laboratorium.
Perkembangan di bidang Teknik Material secara langsung akan mempengaruhi perkembangan disiplin ilmu dan teknologi lainnya, terutama yang berkenaan dengan ketersediaan material yang dapat menunjang teknologi tersebut. Sebagai contoh, penemuan material semikonduktor untuk IC yang menggantikan transistor mengawali perkembangan di bidang instrumentasi dan elektronika.
Proses perkuliahan di program studi Teknik Material pun tak kalah menarik. Di sini teman-teman akan banyak menghabiskan waktu di laboratorium. Melakukan pengujian dan percobaan terhadap material tertentu. Dengan ilmu yang didapatkan di Teknik Material teman-teman juga akan mampu menentukan material apa yang paling cocok untuk digunakan untuk membuat sesuatu. Keilmuan Teknik Material akan sangat berkaitan erat dengan ilmu-ilmu lainnya. Misalnya saja keterkaitan ilmu Teknik Material dengan Teknik Penerbangan. Dalam pembuatan kerangka pesawat terbang, mahasiswa Teknik Penerbangan yang akan mendesain dan merancang struktur rangka pesawat yang ringan namun kuat, sedangkan sarjana Teknik Material akan menentukan material apa yang paling cocok untuk menyokong struktur dan desain yang telah dirancang oleh sarjana Teknik Penerbangan tadi. Sehingga dengan kerjasama tersebut akan dihasilkan pesawat terbang yang kokoh baik dari aspek teknis maupun materialnya.
Prospek Kerja
Luasnya cakupan disiplin ilmu dan teknik material memberikan keluasan juga pada bidang kerja yang dapat digeluti oleh sarjana Teknik Material, antara lain:
Sumber Artikel: itb.ac.id
Teknik Mesin
Dipublikasikan oleh Muhammad Farhan Fadhil pada 28 Maret 2022
Tim Biomekanika, Fakultas Teknik Mesin dan Dirgantara (FTMD) ITB berhasil membuat alat untuk melindungi dan membantu pekerjaan dokter gigi di masa pandemi. Alat yang sudah berhasil diajukan patennya tersebut bernama Dent-In.
Nama Dent-In sendiri merupakan singkatan dari Dental Indonesia yang terinspirasi dari bagian anatomi gigi yaitu dentin. Alat ini merupakan proyek multidisiplin yang melibatkan banyak dosen FTMD dan alumni dari berbagai bidang keilmuan yang berbeda. Ketua Tim penelitinya ialah Satrio Wicaksono, S.T., M.Eng., Ph.D., dengan tim dosen FTMD yang terlibat yaitu Pramudita Satria Palar, S.T., M.T, Ph.D., dan Luqman Fathurohim, S.T., M.T. dari Kelompok Keahlian Fisika Terbang yang membantu masalah aliran fluida, lalu ada Ferryanto, S.T., M.T. dan Arif Sugiharto, S.T., M.T. dari Kelompok Keahlian Perancangan Mesin yang membantu di bidang desain dan produksi.
Beberapa dosen lainnya dari beberapa Kelompok Keahlian di FTMD ITB juga ikut terlibat dalam pengawasan kegiatan ini, seperti Prof. Dr. Djoko Suharto, Prof. Dr. Andi Isra Mahyuddin, Prof Dr. Tatacipta Dirgantara, dan Dr.Eng. Sandro Mihrardi. Kegiatan ini juga melibatkan alumni-alumni muda Teknik Mesin FTMD ITB yaitu Nandy Achmad Fauzy, S.T., Fikri Sobari Tahmidi, S.T., dan Ricky Indra Gunawan, S.T. yang terlibat langsung dalam desain dan pembuatan alat. Kolaborasi yang dilakukan pun melibatkan dokter gigi yang memberikan ide-ide dan saran dari kebutuhan nyata di lapangan. Hal ini menunjukkan bahwa dalam melakukan pemecahan masalah, pendekatan multidisiplin sangatlah diperlukan agar solusi yang diciptakan tepat sasaran.
Proses perancangan Dent-In dimulai sejak Mei 2020 berawal dari keresahan drg. Harry Huiz Peeters selaku anggota tim terhadap nasib kedokteran gigi di masa pandemi Covid-19 ini. Berdasarkan penelitian, virus Covid-19 berpotensi menyebar melalui aerosol. Untuk itulah Dent-In dikembangkan sebagai bentuk pemecahan masalah yang dihadapi kedokteran gigi.
“Dent-In jika dikategorikan termasuk ke dalam jenis alat extraoral aerosol suction yang dapat mengurangi risiko dokter gigi terinfeksi virus dengan mengisolasi dan memfilter aerosol dari pasien selama prosedur perawatan gigi,” ujar Satrio Wicaksono, Ph.D., kepada Reporter Humas ITB belum lama ini.
Dent-In memiliki keunggulan dibandingkan alat extraoral aerosol suction biasa. Terdapat penambahan shield transparan yang menyerupai personal negative chamber/screen pada Dent-In sehingga dapat meminimalisir cipratan aerosol dari pasien. Selain itu dengan adanya shield ini, maka pengaturan peletakan komponen nozzle cup menjadi lebih mudah.
“Jika sebelumnya nozzle cup harus diletakkan dekat sekali dengan mulut pasien, sekarang nozzle cup dapat diletakkan jauh dari mulut pasien sehingga tidak mengganggu visual dokter gigi. Hal ini dapat dilakukan karena adanya shield yang menghalau aerosol,” ucap Dr. Satrio saat memaparkan jenis alat yang dikembangkannya.
Menurut penjelasan Dr. Satrio, Dent-In bekerja dengan melakukan penghisapan aerosol yang keluar dari mulut pasien melalui bagian nozzle cup lalu dialirkan dengan selang menuju kotak berisi filter HEPA untuk menangkap partikel. Setelah itu udara yang telah disaring, masuk ke dalam vacuum blower dan akan melewati sinar UV untuk disterilisasi sebelum keluar dari exhaust menghasilkan udara bersih.
Lihat video produk Dent-In di sini
Uniknya, Dent-In sudah menggunakan filter HEPA H14 yang lebih canggih dibanding alat extraoral aerosol suction di pasaran. Filter tersebut mampu menyaring udara hingga berukuran 0,3 mikron dengan efektivitas mencapai 99,99%. Selain itu, Dent-In merupakan alat yang user friendly. Alat ini dapat dioperasikan menggunakan pengendali jarak jauh dengan tiga pilihan kecepatan atau secara langsung dari tombol pada alat tersebut.
Dalam proses pembuatan proyek ini, sumber dana diperoleh dari LPDP dan RISTEK-BRIN melalui kategori konsorsium riset dan inovasi Covid-19. Sampai sejauh ini sudah terdapat tiga working prototype yang berhasil diproduksi. Satu untuk development terus menerus, satu untuk diuji oleh BPFK sebagai badan yang mengeluarkan surat rekomendasi untuk alat kesehatan, dan satu lagi akan diserahkan ke FKG Unpad.
Meski kondisi pandemi menyebabkan sulitnya akses laboratorium di ITB, hal ini tidak menghalangi tim untuk terus menerus mengembangkan Dent-In. Target dan harapan tim selanjutnya adalah memproduksi Dent-In secara massal dan memperjualbelikannya dengan harga terjangkau. Oleh karena itu tim sedang menjajaki partner industri yang sesuai untuk memfasilitasi produksi Dent-In sampai terjual di pasaran.
Pada Jumat (4/6/2021) lalu, FTMD ITB menyerahkan alat Dent-In kepada Fakultas Kedokteran Gigi Universitas Padjadjaran di Aula Kampus FKG Unpad, untuk membantu dokter gigi di sana menangani pasien selama pandemi.
Sumber Artikel: itb.ac.id
Teknik Mesin
Dipublikasikan oleh Muhammad Farhan Fadhil pada 28 Maret 2022
Mekanika (Bahasa Latin mechanicus, dari Bahasa Yunani mechanikos, "seseorang yang ahli di bidang mesin") adalah jenis ilmu khusus yang mempelajari fungsi dan pelaksanaan mesin, alat atau benda yang seperti mesin. Mekanika merupakan bagian yang sangat penting dalam ilmu fisika terutama untuk ilmuwan dan rekayasawan. Mekanika juga berarti ilmu pengetahuan yang mempelajari gaya gerak suatu benda serta efek dari gaya yang dihasilkannya.
Cabang ilmu mekanika secara garis besar terbagi menjadi dua, yaitu statika dan dinamika. Sedangkan dinamika dapat pula dibagi dua menjadi kinematika dan kinetika.
Sejarah
Pemikiran awal mengenai mekanika dimulai pada masa Aristoteles (384–322 SM). Bidang ilmu mekanika yang paling awal ialah mekanika benda langit. Aristoteles pada masanya menganggap Bumi sebagai objek yang diam dengan bintang-bintang yang mengelilinginya mengalami pergerakan atau perputaran. Pemikiran Aristoteles kemudian dikembangkan lebih lanjut oleh ahli astronomi bernama Tycho Brahe pada abad ke-16 Masehi dan dikembangkan lagi oleh muridnya yang bernama Johannes Kepler pada awal abad ke-17 Masehi. Hukum mekanika kemudian baru dirumuskan secara ilmiah pada awal abad ke-17 Masehi oleh Isaac Newton dari bukti-bukti empiris yang ditemukan oleh Brahe dan Kepler. Konsep dasar yang dikemukakan oleh Newton ialah gaya dan massa, yang kemudian dikembangkan lagi menjadi teori gravitasi. Ilmu mekanika kemudian terus dikembangkan pada paruh kedua abad ke-17 Masehi hingga paruh pertama abad ke-19 Masehi. Para pengembangnya di antaranya ialah Johann Bernoulli, Jean le Rond d'Alembert, Joseph-Louis de Lagrange dan William Rowan Hamilton. Pada masa ini, ilmu mekanika dikenal sebagai mekanika klasik, mekanika teoretik atau mekanika analitik. Dari mekanika klasik ini kemudian berkembang ilmu mekanika yang lebih rumit dan berkaitan dengan fisika modern, yaitu mekanika gelombang, mekanika statistik, dan mekanika kuantum. Perkembangan mekanika kemudian berlanjut melalui pemikiran-pemikiran Albert Einstein pada paruh pertama abad ke-20 Masehi, Pemikiran Einstein kemudian mengembangkan mekanika relativistik menggunakan teori relativitas khusus.
Satuan
Mekanika termasuk ke dalam bidang keilmuan fisika, sehingga satuan yang digunakan berkaitan dengan besaran fisika mekanika. Pada mekanika digunakan besaran yaitu panjang, massa, dan waktu. Sistem satuan yang digunakan dalam mekanika ialah sistem satuan MKS dan sistem satuan CGS.
Mekanika Klasik
Berikut ini adalah digolongkan sebagai mekanika klasik:
Mekanika fluida
Mekanika fluida merupakan cabang mekanika yang mempelajari mengenai pergerakan dari fluida. Pergerakan ini diamati dalam bentuk cairan maupun gas. Dalam mekanika fluida juga dipelajari fluida yang tidak dalam keadaan bergerak atau diam. Sebagian besar bahasan dalam mekanika fluida berkaitan dengan mekanika kontinum. Secara garis besar, mekanika fluida terbagi menjadi statika fluida yang mempelajari fluida dalam keadaan diam, dan dinamika fluida yang mempelajari fluida dalam keadaan bergerak. Khusus pada dinamika fluida digunakan pendekatan matematika dan bukti empiris yang rumit guna penyelesaian masalah.
Mekanika tanah
Mekanika tanah merupakan suatu bidang ilmu yang menggabungkan beberapa cabang mekanika dengan tujuan untuk mempelajari tentang tanah dan komponennya guna melakukan kegiatan konstruksi. Dalam penerapan praktis, mekanika tanah digunakan pada teknik sipil untuk memprediksi karakteristik kinerja tanah. Dalam penerapannya, mekanika tanah menggunakan teknik statika, teknik dinamika, mekanika fluida, dan teknologi lainnya untuk menganalisa struktur tanah. Studi utama dalam mekanika tanah meliputi studi komposisi tanah, kekuatan, konsolidasi, dan penggunaan prinsip hidrolik. Manfaat dari ilmu mekanika tanah ialah mengurangi dan mengatasu masalah geologi rekayasa yang disebabkan oleh keberadaan serta sifat dari batuan sedimen dan reaksi pengendapan lainnya. Sementara itu, para rekayasawan memanfaatkan teori mekanika tanah untuk keperluan rekayasa konstruksi bangunan, perencanaan peralatan dan bahan pendukung serta mengelola jenis pekerjaan yang diperlukan. Kajian utama di dalam mekanika tanah ialah proses pembentukan tanah, sifat fisika dan sifat kimia tanah, kerapatan tanah, permeabilitas dan penyatuan tanah.
Mekanika kuantum
Beberapa kategori ini dikategorikan sebagai Mekanika kuantum:
Asas
Asas kekekalan energi mekanik
Asas kekekalan energi mekanik adalah sebuah asas dalam mekanika yang menyatakan bahwa jumlah energi mekanik selalu konstan. Dalam asas ini, energi kinetik dan energi potensial saling menggantikan sehingga jumlah energi mekanik secara keseluruhan tetap sama dan tidak berubah. Asas kekekalan energi mekanik merupakan hasil pengembangan dari konsep usaha dan energi kinetik. Dalam asas kekekalan energi usaha tidak dinyatakan dalam satuan daya. Asas kekekalan energi mekanik digunakan untuk menganalisa gerakan suatu benda tanpa dipengaruhi oleh faktor lingkungan di luar benda tersebut. Analisis dilakukan dengan menghitung besarnya perubahan energi dari benda tersebut.
Pemanfaatan Teoritis
Fisika statistik
Mekanika statistik secara khusus memberikan sumbangan kepada perkembangan fisika statistik. Penerapan mekanika statistik dalam fisika statistik ialah pada perumusan modern tentang ensambel. Perumusan ini dibuat oleh Josiah Willard Gibbs (1839–1903).
Pemanfaatan Praktis
Teknik pondasi
Ilmu mekanika dapat digunakan untuk menganalisa dan mendesain perencanaan suatu pondasi. Dalam proses analisa, mekanika berperan dalam menjelsakan perilaku tanah dan sifatnya akibat adanya gaya-gaya yang menimbulkan tegangan dan regangan. Perancangan pondasi yang benar diwujudkan dengan mencegah terjadinya penyimpangan konstruksi tanah dari kondisi ideal. Secara lebih lanjut, mekanika tanah digunakan untuk mengatur bentuk permukaan jalan, pembangunan bangunan dan strukturnya di bawah tanah serta perencanaan pembuatan berem dan penggalian.
Sumber Artikel: id.wikipedia.org
Teknik Mesin
Dipublikasikan oleh Muhammad Farhan Fadhil pada 28 Maret 2022
Ilmu material atau teknik material atau ilmu bahan adalah sebuah interdisiplin ilmu teknik yang mempelajari sifat material dan aplikasinya terhadap berbagai bidang ilmu dan teknik. Ilmu ini mempelajari hubungan antara struktur material dan sifatnya. Termasuk ke dalam ilmu ini adalah unsur fisika terapan, teknik kimia, mesin, sipil dan listrik. Ilmu material juga mempelajari teknik proses atau fabrikasi (pengecoran, pengerolan, pengelasan, dan lain-lain), teknik analisis, kalorimetri, mikroskopi optik dan elektron, dan lain-lain), serta analisis biaya atau keuntungan dalam produksi material untuk industri.
Perkembangan terakhir, ilmu tentang material ini mendapat sumbangan yang besar dari majunya bidang nanoteknologi dan mulai diajarkan secara luas di banyak universitas.
Banyak masalah ilmiah yang paling mendesak yang dihadapi manusia saat ini adalah karena keterbatasan material yang tersedia dan bagaimana material itu digunakan. Dengan demikian, terobosan dalam ilmu material cenderung mempengaruhi masa depan teknologi secara signifikan.
Ilmuwan material menekankan pemahaman bagaimana sejarah suatu material (pemrosesannya) memengaruhi strukturnya, dan dengan demikian juga sifat dan kinerjanya. Pemahaman hubungan pemrosesan-struktur-sifat disebut paradigma material. Paradigma ini digunakan untuk memajukan pemahaman di berbagai bidang penelitian, termasuk nanoteknologi, biomaterial, dan metalurgi. Ilmu material juga merupakan bagian penting dari teknik forensik dan analisis kegagalan – menyelidiki material, produk, struktur atau komponen yang gagal atau tidak berfungsi sesuai keinginan, menyebabkan cedera pribadi, atau kerusakan pada properti. Investigasi semacam itu adalah kunci untuk memahami misalnya penyebab berbagai kecelakaan dan insiden penerbangan.
Sejarah
Bahan yang menjadi pilihan utama pada era tertentu sering kali merupakan sebuah titik yang menentukan. Frasa seperti Zaman Batu, Zaman Perunggu, Zaman Besi, dan Zaman Baja adalah contohnya. Awalnya berasal dari pembuatan keramik dan metalurgi, ilmu material adalah salah satu bentuk tertua dari teknik dan ilmu terapan. Ilmu material modern berevolusi langsung dari metalurgi, yang dengan sendirinya berevolusi dari pertambangan dan (kemungkinan) ilmu keramik dan penggunaan api. Sebuah terobosan besar dalam pemahaman material terjadi pada akhir abad ke-19, ketika ilmuwan Amerika Josiah Willard Gibbs menunjukkan bahwa sifat termodinamika yang terkait dengan struktur atom dalam berbagai fase berkaitan dengan sifat fisik suatu material. Elemen penting dari ilmu material modern adalah produk dari Perlombaan Antariksa: pemahaman dan rekayasa paduan logam, material silika, dan karbon yang digunakan dalam membangun kendaraan luar angkasa memungkinkan eksplorasi luar angkasa. Ilmu material telah mendorong dan didorong oleh pengembangan teknologi revolusioner seperti karet, plastik, semikonduktor, dan biomaterial.
Sebelum tahun 1960-an (dan dalam beberapa kasus beberapa dekade setelahnya), banyak departemen ilmu material yang awalnya adalah departemen teknik metalurgi atau keramik, yang mencerminkan penekanan pada pilihan material utama abad ke-19 dan awal ke-20 yaitu logam dan keramik. Pertumbuhan ilmu material di Amerika Serikat sebagian dikatalisasi oleh Advanced Research Projects Agency, yang mendanai serangkaian laboratorium yang diselenggarakan oleh universitas pada awal 1960-an "untuk memperluas program nasional penelitian dasar dan pelatihan dalam ilmu material." Bidang ilmu material sejak saat itu diperluas untuk mencakup setiap kelas material, termasuk keramik, polimer, semikonduktor, material magnetik, biomaterial, dan nanomaterial. Ilmu material umumnya diklasifikasikan menjadi tiga kelompok berbeda: keramik, logam, dan polimer. Perubahan yang menonjol dalam ilmu material selama beberapa dekade terakhir adalah penggunaan aktif simulasi komputer untuk menemukan materi baru, memprediksi properti, dan memahami fenomena.
Dasar
Suatu material didefinisikan sebagai suatu zat (paling sering zat padat, tetapi fase kondensasi lainnya dapat dimasukkan) yang dimaksudkan untuk digunakan untuk aplikasi tertentu.[4] Ada banyak sekali bahan di sekitar kita — bahan-bahan itu bisa ditemukan di mana saja, dari bangunan hingga pesawat ruang angkasa. Material umumnya dapat dibagi lagi menjadi dua kelas: kristal dan non-kristal. Contoh material tradisional adalah logam, semikonduktor, keramik, dan polimer.[5] Material baru dan canggih yang sedang dikembangkan termasuk material nano, biomaterial, [6] dan energi.
Dasar ilmu material melibatkan mempelajari struktur material, dan menghubungkannya dengan sifat-sifatnya. Begitu seorang ilmuwan material tahu tentang korelasi struktur-properti ini, mereka kemudian dapat melanjutkan untuk mempelajari kinerja relatif suatu bahan dalam suatu penerapannya. Penentu utama dari struktur suatu material dan sifat-sifatnya adalah unsur-unsur kimia penyusunnya dan cara bahan itu diproses menjadi bentuk akhirnya. Karakteristik ini yang disatukan dan dihubungkan melalui hukum termodinamika dan kinetika, mengatur struktur mikro suatu material, dan dengan demikian sifat-sifatnya.
Struktur
Seperti disebutkan di atas, struktur adalah salah satu komponen terpenting dari bidang ilmu material. Ilmu material mengkaji struktur material dari skala atom, hingga skala makro. Karakterisasi adalah cara para ilmuwan meneliti struktur suatu material. Ini melibatkan metode seperti difraksi dengan sinar-X, elektron, atau neutron, dan berbagai bentuk spektroskopi dan analisis kimia seperti spektroskopi Raman, spektroskopi dispersi energi (EDS), kromatografi, analisis termal, analisis mikroskop elektron, dll. Struktur dipelajari pada berbagai tingkatan, sebagaimana dirinci di bawah ini.
Struktur atom
Ini berkaitan dengan atom-atom dari material, dan bagaimana mereka diatur untuk memberikan molekul, kristal, dll. Sebagian besar sifat listrik, magnetik, dan kimia bahan timbul dari tingkat struktur ini. Skala panjang yang terlibat adalah angstrom (Å). Ikatan kimia dan pengaturan atom (kristalografi) adalah dasar untuk mempelajari sifat dan perilaku bahan apa pun.
Ikatan
Untuk mendapatkan pemahaman penuh tentang struktur material dan bagaimana hubungannya dengan sifat-sifatnya, ilmuwan material harus mempelajari bagaimana atom, ion, dan molekul yang berbeda diatur dan terikat satu sama lain. Ini melibatkan studi dan penggunaan kimia kuantum atau fisika kuantum. Fisika benda padat, kimia benda padat, dan kimia fisik juga terlibat dalam studi ikatan dan struktur.
Kristalografi
Kristalografi adalah ilmu yang meneliti susunan atom dalam padatan kristal. Kristalografi adalah alat yang berguna bagi para ilmuwan material. Dalam kristal tunggal, efek susunan kristal atom sering mudah dilihat secara makroskopis, karena bentuk alami kristal mencerminkan struktur atom. Lebih lanjut, sifat fisik sering dikendalikan oleh cacat kristal. Pemahaman tentang struktur kristal merupakan prasyarat penting untuk memahami cacat kristalografi. Sebagian besar bahan tidak terbuat sebagai kristal tunggal, tetapi dalam bentuk polikristalin yaitu sebagai agregat dari kristal kecil dengan orientasi yang berbeda. Karena itu, metode difraksi bubuk yang menggunakan pola difraksi sampel polikristalin dengan sejumlah besar kristal memainkan peran penting dalam penentuan struktural. Sebagian besar bahan memiliki struktur kristal, tetapi beberapa bahan penting tidak menunjukkan struktur kristal yang biasa. Polimer menampilkan berbagai tingkat kristalinitas, dan banyak yang sepenuhnya nonkristalin. Kaca, beberapa keramik, dan banyak bahan-bahan alami yang amorf, tidak memiliki urutan jarak jauh pada pengaturan atom mereka. Studi tentang polimer menggabungkan unsur-unsur termodinamika kimia dan statistik untuk memberikan deskripsi sifat fisik termodinamika dan mekanis.
Struktur nano
Struktur nano berurusan dengan objek dan struktur yang ada dalam kisaran panjang 1-100 nm.[7] Dalam banyak bahan, atom atau molekul menggumpal bersama untuk membentuk objek di skala nano. Ini menyebabkan banyak sifat listrik, magnetik, optik, dan mekanik yang menarik.
Dalam menggambarkan struktur nano perlu untuk membedakan antara jumlah dimensi pada skala nano. Permukaan nanotekstur memiliki satu dimensi pada skala nano, yaitu ketebalan permukaan suatu benda pada kisaran antara 0,1 dan 100 nm. Tabung nano memiliki dua dimensi pada skala nano, yaitu diameter tabung pada kisaran antara 0,1 dan 100 nm, tetapi panjangnya bisa jauh lebih besar. Dan partikel nano bola memiliki tiga dimensi pada skala nano, yaitu partikelnya berkisar antara 0,1 dan 100 nm di setiap dimensi spasial. Istilah nanopartikel dan partikel ultrahalus (UFP) sering digunakan secara sinonim meskipun UFP dapat mencapai rentang mikrometer. Istilah 'struktur nano' sering digunakan ketika mengacu pada teknologi magnetik. Struktur nano dalam biologi sering disebut ultrastruktur.
Bahan yang atom dan molekulnya membentuk konstituen dalam skala nano (yaitu bahan yang membentuk struktur nano) disebut bahan nano atau nanomaterial. Nanomaterial adalah subjek penelitian intens di komunitas ilmu material karena sifat unik yang mereka miliki.
Sumber Artikel: id.wikipedia.org
Teknik Mesin
Dipublikasikan oleh Muhammad Farhan Fadhil pada 28 Maret 2022
Berikut adalah penjelasan singkat tentang bidang-bidang yang tercakup dalam bidang teknik mesin
Sumber Artikel: mechanical.uii.ac.id