Teknik Industri

Peran dan Tanggung Jawab Seorang Insinyur Industri

Dipublikasikan oleh Dewi Sulistiowati pada 12 Februari 2025


Fungsi teknik industri dianggap sebagai cabang teknik yang berkisar pada konsep pengembangan, peningkatan, pelaksanaan, dan pemeriksaan sistem kohesif dari mata pelajaran, pengetahuan khusus, peralatan, energi, material, dan metodologi. Peran dan tanggung jawab seorang insinyur industri termasuk dalam artikel ini.

Fungsi dari para profesional yang bekerja di bidang teknik industri harus menekankan pada dasar-dasar dan proses fusi dan analisis. Agenda utama mereka adalah memberantas pemborosan waktu, keuntungan, material, energi, dan aset lainnya. Karier teknik industri kadang-kadang disebut sebagai manajemen teknik operasi, teknik produksi, atau teknik manufaktur. Posisi-posisi ini ditentukan berdasarkan misi dan visi pengguna dan insinyur. Dalam istilah yang lebih sederhana, para profesional teknik industri bekerja keras untuk mengurangi pemborosan waktu, uang, produk, energi, dan aset lainnya.

Peran dan Tanggung jawab 

  1. Dalam karier ini, para insinyur umumnya menggunakan perangkat elektronik seperti rekreasi komputer, khususnya rekreasi peristiwa diskrit, untuk penilaian dan penentuan sistem.
  2. Insinyur industri bertanggung jawab untuk mempelajari kinerja keseluruhan dari para pekerja dalam pekerjaan mereka. Tujuannya adalah untuk meningkatkan efisiensi dan efektivitas dengan mendistribusikan tugas di antara beberapa pemain tim sehingga mereka bekerja dengan sempurna di bawah tenggat waktu yang diberikan tanpa membuang waktu.
  3. Profil teknik industri harus mengawasi departemen kontrol kualitas untuk mempertahankan standar proses manufaktur, untuk mempromosikan esensi produktivitas, mereka mengawasi praktik manajemen sumber daya manusia, kontrol metode statistik, dan yang tak kalah pentingnya, mereka menjaga metode perusahaan untuk bekerja secara efisien.
  4. Untuk membantu perencanaan keuangan, mereka mengelola sistem kontrol manajemen industri yang berkembang, mereka melakukan analisis biaya, perencanaan strategis untuk produksi dan sirkulasi fisik barang dan jasa.

Fungsi teknik industri

Teknik industri adalah cabang teknik yang berhubungan dengan desain, peningkatan, dan implementasi sistem, proses, dan peralatan dalam pengaturan industri. Insinyur industri menggunakan berbagai alat dan teknik, seperti analisis data, pemetaan proses, dan simulasi, untuk mengoptimalkan kinerja sistem industri.

  • Merancang sistem dan peralatan baru: Insinyur industri merancang sistem dan peralatan baru untuk meningkatkan efisiensi dan produktivitas. Hal ini dapat mencakup merancang lini produksi baru, mengembangkan proses manufaktur baru, dan membuat tata letak baru untuk fasilitas industri.
  • Menerapkan perubahan: Insinyur industri mengimplementasikan perubahan untuk meningkatkan efisiensi dan mengurangi biaya. Hal ini dapat mencakup pemasangan peralatan baru, modifikasi proses produksi, dan penerapan alur kerja baru. Mereka juga menggunakan alat simulasi untuk menguji dan mengevaluasi dampak dari perubahan-perubahan ini sebelum diterapkan.
  • Menemukan cara untuk meningkatkan proses produksi: Insinyur industri selalu mencari cara untuk meningkatkan proses produksi. Mereka menggunakan berbagai alat dan teknik untuk mengidentifikasi peluang peningkatan, seperti pemetaan proses, pemetaan aliran nilai, dan manufaktur ramping.
  • Mengembangkan estimasi biaya dan analisis kelayakan: Insinyur industri mengembangkan estimasi biaya dan analisis kelayakan untuk mengevaluasi dampak potensial dari proyek baru dan perubahan proses. Mereka menggunakan informasi ini untuk menentukan apakah suatu proyek layak secara finansial dan untuk mengidentifikasi potensi risiko atau tantangan.

Prospek futuristik setelah lulus

Siswa kelas 12 IPA yang ingin sukses di bidang teknik tidak menyadari tentang cabang-cabang tersebut. Teknik itu sendiri memiliki spektrum yang lebih luas sehingga, siswa umumnya menjadi bingung. Mereka menjadi tegang saat memilih program studi yang sesuai. Mereka mengambil bantuan dari konselor karir profesional, guru dan orang tua. Tetapi Anda tidak perlu khawatir lagi karena dalam artikel ini kami telah menyoroti ruang lingkup teknik industri. Jadi, mari kita lihat.

Profesi insinyur industri terutama berfokus pada pemanfaatan anggota tim, material, energi, data, dan mesin yang cerdas untuk mendapatkan hasil yang luar biasa secara efektif. Peran mereka adalah menjaga produktivitas dengan memastikan kelancaran sistem manajemen. Mereka mengandalkan proses yang dapat diandalkan untuk menciptakan lingkungan kerja yang diinginkan di perusahaan bisnis. Mahasiswa baru teknik industri atau profesional yang bekerja berurusan dengan perencanaan anggaran sirkulasi fisik barang dan jasa.

Insinyur industri cukup mampu untuk mendapatkan pekerjaan di setiap panggilan atau perusahaan karena keserbagunaan mereka. Mereka dapat membangun kerajaan mereka sendiri dengan membuka perusahaan baru. Di sisi lain, mereka dapat bekerja sebagai konsultan atau profesional dalam metode, untuk mengawasi operasi. Tetapi untuk mencapai posisi tinggi seperti itu, diperlukan beberapa tahun keahlian. Para profesional yang bekerja juga dapat melamar organisasi konsultan swasta, sektor-sektor kuarter seperti perusahaan-perusahaan R&D dari perusahaan-perusahaan terkenal.

Kriteria kelayakan kelulusan

Untuk menjadi insinyur industri yang ideal, kandidat harus memiliki gelar BE (Teknik Produksi & Industri). Durasi program ini minimal 4 tahun. Calon peserta yang telah menyelesaikan 10+2 dari jurusan sains memenuhi syarat untuk program Sarjana Industri.

 Untuk tujuan seleksi, Anda harus mengikuti ujian masuk dan wawancara pribadi. Untuk lulus ujian masuk, Anda harus mendapatkan nilai yang baik. Beberapa institut dari seluruh India memilih siswa berdasarkan prestasi. Sekarang ini telah dimasukkan sebagai mata pelajaran khusus setelah BE mekanik / listrik.

Kriteria kelayakan pasca kelulusan 

Untuk bergabung dengan program pasca sarjana di bidang teknik industri, para kandidat harus memiliki gelar sarjana di bidang teknik apa pun atau setara dengan divisi pertama. Beberapa universitas menawarkan penerimaan berdasarkan skor CAT/GATE. Durasi program PG yang sah adalah 2 tahun. Metode seleksi akan mencakup diskusi kelompok dan wawancara pribadi.

Untuk program PHD adalah gelar Magister Sains di bidang Teknik Industri (ME / M. Tech - kursus penuh waktu). Peserta yang memenuhi syarat NET juga memenuhi syarat untuk program ini. Proses seleksi akan membutuhkan kualifikasi pendidikan, keahlian kerja, presentasi seminar, evaluasi wawancara dan pada kenyataannya, ini sepenuhnya didasarkan pada pencapaian profesional secara keseluruhan.

Pertanyaan yang sering diajukan

Q. Apa saja peran dan tanggung jawab teknik industri?

A. Mereka memeriksa sistem yang ada, mengidentifikasi area untuk perbaikan, dan melaksanakan solusi untuk meningkatkan efisiensi. Melakukan studi waktu dan gerakan, menemukan hambatan, dan merancang solusi untuk meningkatkan alur kerja adalah bagian dari proses ini.

Q. Mengapa insinyur industri memainkan peran penting dalam keberlanjutan?

A. Insinyur industri memainkan peran penting dalam meningkatkan efisiensi sumber daya dan praktik industri yang berkelanjutan. Mereka berkonsentrasi pada optimalisasi proses untuk mengurangi limbah, mengurangi konsumsi energi, dan meningkatkan efisiensi secara keseluruhan. 

Q. Apa peran insinyur IE dalam desain sistem industri?

Insinyur industri (IE) sangat penting dalam desain sistem industri. Mereka bertanggung jawab untuk menganalisis, mengoptimalkan, dan menciptakan sistem untuk meningkatkan produktivitas, efisiensi, dan kinerja secara keseluruhan. Insinyur IE mengevaluasi tata letak dan desain fasilitas produksi untuk memastikan bahwa material, peralatan, dan personel mengalir secara efisien. Melalui desain dan peningkatan proses yang efektif, mereka berupaya menghilangkan kemacetan, mengurangi limbah, dan meningkatkan keselamatan.

Q. Apa yang harus dikuasai oleh insinyur industri?

A. Untuk unggul di bidangnya, insinyur industri harus memiliki pengetahuan yang luas di berbagai bidang. Untuk memulainya, mereka harus memiliki kemampuan analisis yang baik untuk menganalisis data, mendeteksi tren, dan membuat kesimpulan yang tepat.

Disadur dari: https://www.careerguide.com/

Selengkapnya
Peran dan Tanggung Jawab Seorang Insinyur Industri

Pertanian

Jaring Makanan: Jenis dan Sejarah

Dipublikasikan oleh Dewi Sulistiowati pada 12 Februari 2025


Jenis-jenis jaring-jaring makanan

Jaring-jaring makanan harus dikumpulkan dan hanya menggambarkan sebagian kecil dari kompleksitas ekosistem yang sebenarnya. Sebagai contoh, jumlah spesies di planet ini kemungkinan besar berada pada urutan umum 107, lebih dari 95% dari spesies ini terdiri dari mikroba dan invertebrata, dan relatif sedikit yang telah diberi nama atau diklasifikasikan oleh para ahli taksonomi. Secara eksplisit dipahami bahwa sistem alam itu 'ceroboh' dan bahwa posisi trofik jaring-jaring makanan menyederhanakan kompleksitas sistem nyata yang terkadang terlalu menekankan banyak interaksi yang jarang terjadi. Sebagian besar penelitian berfokus pada pengaruh yang lebih besar di mana sebagian besar transfer energi terjadi. “Kelalaian dan masalah ini menjadi perhatian, tetapi berdasarkan bukti yang ada, tidak ada kesulitan yang tidak dapat diatasi.”

Ada berbagai jenis atau kategori jaring-jaring makanan:

  • Jaring-jaring sumber - satu atau lebih simpul, semua pemangsa mereka, semua makanan yang dimakan oleh pemangsa ini, dan seterusnya.
  • Jaring-jaring makanan (sink web) - satu atau beberapa simpul, semua mangsanya, semua makanan yang dimakan oleh mangsa, dan seterusnya.
  • Jaring komunitas (atau keterhubungan) - sekelompok simpul dan semua hubungan siapa yang memakan siapa.
  • Jaring aliran energi - aliran energi yang terukur di antara simpul-simpul di sepanjang hubungan antara sumber daya dan konsumen.
  • Jejaring paleoekologi - jejaring yang merekonstruksi ekosistem dari catatan fosil.
  • Jaring fungsional - menekankan signifikansi fungsional dari hubungan tertentu yang memiliki kekuatan interaksi yang kuat dan pengaruh yang lebih besar terhadap organisasi masyarakat, lebih dari jalur aliran energi. Jaring fungsional memiliki kompartemen, yang merupakan sub-kelompok dalam jaringan yang lebih besar dengan kepadatan dan kekuatan interaksi yang berbeda. Jaring-jaring fungsional menekankan bahwa “pentingnya setiap populasi dalam menjaga keutuhan suatu komunitas tercermin dari pengaruhnya terhadap tingkat pertumbuhan populasi lain.”: 511 

Dalam kategori ini, jaring-jaring makanan dapat diatur lebih lanjut sesuai dengan berbagai jenis ekosistem yang sedang diselidiki. Misalnya, jaring makanan manusia, jaring makanan pertanian, jaring makanan detrital, jaring makanan laut, jaring makanan akuatik, jaring makanan tanah, jaring makanan Arktik (atau kutub), jaring makanan terestrial, dan jaring makanan mikroba. Karakterisasi ini berasal dari konsep ekosistem, yang mengasumsikan bahwa fenomena yang sedang diselidiki (interaksi dan umpan balik) cukup untuk menjelaskan pola di dalam batas-batas, seperti tepi hutan, pulau, garis pantai, atau beberapa karakteristik fisik yang jelas.

  • Jaring detrital

Dalam jaring detrital, materi tumbuhan dan hewan diuraikan oleh pengurai, misalnya bakteri dan jamur, dan berpindah ke detritivora dan kemudian ke karnivora. Sering kali terdapat hubungan antara jaring detrital dan jaring penggembalaan. Jamur yang dihasilkan oleh pengurai di jaring detrital menjadi sumber makanan bagi rusa, tupai, dan tikus di jaring penggembalaan. Cacing tanah yang dimakan oleh burung robin adalah detritivora yang memakan daun-daun yang membusuk.

"Detritus dapat didefinisikan secara luas sebagai segala bentuk bahan organik tak hidup, termasuk berbagai jenis jaringan tanaman (misalnya serasah daun, kayu mati, makrofita akuatik, ganggang), jaringan hewan (bangkai), mikroba mati, kotoran (pupuk kandang, kotoran, pelet feses, guano, frass), serta produk yang dikeluarkan, diekskresikan, atau dipancarkan dari organisme (misalnya g. polimer ekstra seluler, nektar, eksudat dan lindi akar, bahan organik terlarut, matriks ekstra seluler, lendir). Pentingnya bentuk-bentuk detritus ini, dalam hal asal, ukuran, dan komposisi kimia, bervariasi di seluruh ekosistem.": 585 

Jaring-jaring makanan kuantitatif

Ahli ekologi mengumpulkan data tentang tingkat trofik dan jaring-jaring makanan untuk memodelkan secara statistik dan menghitung parameter secara matematis, seperti yang digunakan dalam jenis analisis jaringan lainnya (misalnya, teori graf), untuk mempelajari pola dan sifat yang muncul dan dimiliki bersama di antara ekosistem. Ada beberapa dimensi ekologi yang dapat dipetakan untuk membuat jaring-jaring makanan yang lebih rumit, termasuk: komposisi spesies (jenis spesies), kekayaan (jumlah spesies), biomassa (berat kering tanaman dan hewan), produktivitas (tingkat konversi energi dan nutrisi ke dalam pertumbuhan), dan stabilitas (jaringan makanan dari waktu ke waktu). Diagram jaring makanan yang menggambarkan komposisi spesies menunjukkan bagaimana perubahan pada satu spesies dapat secara langsung dan tidak langsung mempengaruhi banyak spesies lainnya. Studi mikrokosmos digunakan untuk menyederhanakan penelitian jaring makanan ke dalam unit semi-terisolasi seperti mata air kecil, batang kayu yang membusuk, dan eksperimen laboratorium menggunakan organisme yang bereproduksi dengan cepat, seperti daphnia yang memakan ganggang yang tumbuh di bawah lingkungan terkontrol dalam stoples berisi air.

Meskipun kompleksitas hubungan jaring-jaring makanan yang sebenarnya sulit untuk diuraikan, para ahli ekologi telah menemukan model matematika pada jaringan sebagai alat yang sangat berharga untuk mendapatkan wawasan tentang struktur, stabilitas, dan hukum perilaku jaring-jaring makanan relatif terhadap hasil yang dapat diamati. “Teori jejaring makanan berpusat pada gagasan keterhubungan.”: 1648 Rumus kuantitatif menyederhanakan kompleksitas struktur jaring-jaring makanan. Jumlah hubungan trofik (tL), misalnya, dikonversi menjadi nilai keterhubungan:

di mana, S(S-1)/2 adalah jumlah maksimum hubungan biner di antara S spesies. “Konektivitas (C) adalah bagian dari semua kemungkinan hubungan yang terealisasi (L/S2) dan mewakili ukuran standar kompleksitas jaring-jaring makanan...”: 12913 Jarak (d) antara setiap pasangan spesies dalam sebuah jaring dirata-ratakan untuk menghitung jarak rata-rata antara semua simpul dalam jaring (D) dan dikalikan dengan jumlah total tautan (L) untuk mendapatkan kerapatan tautan (LD), yang dipengaruhi oleh variabel yang bergantung pada skala, seperti kekayaan spesies. Rumus-rumus ini merupakan dasar untuk membandingkan dan menyelidiki sifat pola non-acak dalam struktur jaringan rantai makanan di berbagai jenis ekosistem.

Hukum skala, kompleksitas, kekacauan, dan korelasi pola adalah fitur umum yang dikaitkan dengan struktur jaringan makanan.

  • Kompleksitas dan stabilitas

Jaring-jaring makanan sangat kompleks. Kompleksitas adalah istilah yang menunjukkan kesulitan mental untuk memahami semua efek tingkat tinggi yang mungkin terjadi dalam jaring-jaring makanan. Kadang-kadang dalam terminologi jaring-jaring makanan, kompleksitas didefinisikan sebagai hasil kali antara jumlah spesies dan keterhubungan, meskipun ada kritik terhadap definisi ini dan metode lain yang diusulkan untuk mengukur kompleksitas jaringan. Keterhubungan adalah “sebagian kecil dari semua kemungkinan hubungan yang direalisasikan dalam sebuah jaringan” ..: 12917 Konsep-konsep ini diturunkan dan distimulasi melalui saran bahwa kompleksitas mengarah pada stabilitas dalam jaring-jaring makanan, seperti meningkatkan jumlah tingkat trofik dalam ekosistem yang lebih kaya spesies. Hipotesis ini ditantang melalui model matematika yang menunjukkan sebaliknya, tetapi penelitian selanjutnya menunjukkan bahwa premis tersebut berlaku dalam sistem nyata.

Pada tingkat yang berbeda dalam hirarki kehidupan, seperti stabilitas jaring makanan, “struktur keseluruhan yang sama dipertahankan meskipun ada aliran dan perubahan komponen yang terus menerus.”: 476 Semakin jauh suatu sistem kehidupan (misalnya, ekosistem) bergoyang dari keseimbangan, semakin besar kompleksitasnya. Kompleksitas memiliki banyak arti dalam ilmu kehidupan dan di ruang publik yang membingungkan penerapannya sebagai istilah yang tepat untuk tujuan analisis dalam sains. Kompleksitas dalam ilmu kehidupan (atau biokompleksitas) didefinisikan sebagai “sifat-sifat yang muncul dari interaksi perilaku, biologis, fisik, dan interaksi sosial yang memengaruhi, menopang, atau dimodifikasi oleh organisme hidup, termasuk manusia.” 1018 

Beberapa konsep telah muncul dari studi tentang kompleksitas dalam jaring-jaring makanan. Kompleksitas menjelaskan banyak prinsip yang berkaitan dengan pengorganisasian diri, non-linearitas, interaksi, umpan balik sibernetik, diskontinuitas, kemunculan, dan stabilitas dalam jaring-jaring makanan. Nestedness, misalnya, didefinisikan sebagai “pola interaksi di mana spesialis berinteraksi dengan spesies yang membentuk subset sempurna dari spesies yang berinteraksi dengan generalis”,: 575 “-yaitu, makanan spesies yang paling terspesialisasi merupakan subset dari makanan spesies yang lebih umum, dan makanannya merupakan subset dari yang lebih umum, dan seterusnya.” Sampai saat ini, diperkirakan bahwa jaring-jaring makanan hanya memiliki sedikit struktur bersarang, tetapi bukti empiris menunjukkan bahwa banyak jaring-jaring yang telah dipublikasikan memiliki sub-jaring yang bersarang di dalamnya.

Jaring-jaring makanan adalah jaringan yang kompleks. Sebagai jaringan, mereka menunjukkan sifat struktural dan hukum matematika yang sama yang telah digunakan untuk menggambarkan sistem kompleks lainnya, seperti dunia kecil dan sifat bebas skala. Atribut dunia kecil mengacu pada banyaknya simpul yang terhubung secara longgar, pengelompokan padat non-acak dari beberapa simpul (misalnya, trofik atau spesies kunci dalam ekologi), dan panjang jalur yang kecil dibandingkan dengan kisi-kisi biasa. "Jaringan ekologi, terutama jaringan mutualistik, umumnya sangat heterogen, terdiri dari area dengan hubungan yang jarang antar spesies dan area yang berbeda dengan spesies yang terkait erat. Wilayah dengan kepadatan hubungan yang tinggi ini sering disebut sebagai kelompok, pusat, kompartemen, sub-kelompok kohesif, atau modul... Dalam jaring-jaring makanan, terutama pada sistem akuatik, kesarang tampaknya terkait dengan ukuran tubuh karena makanan predator yang lebih kecil cenderung bersarang di dalam himpunan bagian dari predator yang lebih besar (Woodward & Warren, 2007; YvonDurocher et al. 2008), dan kendala filogenetik, di mana taksa terkait bersarang berdasarkan sejarah evolusi yang sama, juga terlihat jelas (Cattin et al. 2004).": 257 ”Kompartemen dalam jaring-jaring makanan merupakan subkelompok taksa di mana banyak interaksi yang kuat terjadi di dalam subkelompok dan hanya sedikit interaksi yang lemah yang terjadi di antara subkelompok. Secara teoritis, kompartemen meningkatkan stabilitas dalam jaringan, seperti jaring-jaring makanan."

Jaring-jaring makanan juga kompleks dalam hal perubahan skala, musiman, dan geografis. Komponen-komponen jaring-jaring makanan, termasuk organisme dan nutrisi mineral, melewati ambang batas ekosistem. Hal ini memunculkan konsep atau area studi yang dikenal sebagai subsidi lintas batas. “Hal ini menyebabkan anomali, seperti perhitungan jaring makanan yang menentukan bahwa suatu ekosistem dapat mendukung separuh karnivora puncak, tanpa menentukan ujung yang mana.” Meskipun demikian, perbedaan nyata dalam struktur dan fungsi telah diidentifikasi ketika membandingkan berbagai jenis jaring-jaring makanan ekologis, seperti jaring-jaring makanan terestrial vs akuatik.

Sejarah jaring-jaring makanan

Jaring-jaring makanan berfungsi sebagai kerangka kerja untuk membantu para ahli ekologi dalam mengatur jaringan interaksi yang kompleks di antara spesies yang diamati di alam dan di seluruh dunia. Salah satu deskripsi paling awal tentang rantai makanan dijelaskan oleh seorang sarjana Afro-Arab abad pertengahan bernama Al-Jahiz: “Semua hewan, singkatnya, tidak dapat hidup tanpa makanan, dan hewan yang diburu juga tidak dapat menghindar dari buruannya.”: 143 Penggambaran grafis paling awal dari jaring makanan adalah oleh Lorenzo Camerano pada tahun 1880, diikuti secara terpisah oleh Pierce dan rekan-rekannya pada tahun 1912 dan Victor Shelford pada tahun 1913. Dua jaring makanan tentang ikan haring dibuat oleh Victor Summerhayes dan Charles Elton serta Alister Hardy pada tahun 1923 dan 1924. Charles Elton kemudian memelopori konsep siklus makanan, rantai makanan, dan ukuran makanan dalam buku klasiknya tahun 1927 “Animal Ecology”; 'siklus makanan' Elton digantikan oleh 'jaring makanan' dalam teks ekologi berikutnya. Setelah Charles Elton menggunakan jaring-jaring makanan dalam sintesisnya pada tahun 1927, jaring-jaring makanan menjadi konsep utama dalam bidang ekologi. Elton mengorganisasikan spesies ke dalam kelompok-kelompok fungsional, yang menjadi dasar bagi sistem klasifikasi trofik dalam karya klasik dan penting Raymond Lindeman pada tahun 1942 tentang dinamika trofik. Gagasan tentang jaring makanan memiliki pijakan historis dalam tulisan-tulisan Charles Darwin dan terminologinya, termasuk “bank yang terjerat”, “jaring kehidupan”, “jaring hubungan yang rumit”, dan mengacu pada tindakan dekomposisi cacing tanah, ia berbicara tentang “pergerakan partikel-partikel bumi yang terus berlanjut”. Bahkan sebelumnya, pada tahun 1768, John Bruckner menggambarkan alam sebagai “satu jaringan kehidupan yang berkelanjutan”.

Ketertarikan pada jaring makanan meningkat setelah studi eksperimental dan deskriptif Robert Paine tentang pantai intertidal yang menunjukkan bahwa kompleksitas jaring makanan adalah kunci untuk menjaga keragaman spesies dan stabilitas ekologi. Banyak ahli ekologi teoretis, termasuk Sir Robert May dan Stuart Pimm, terdorong oleh penemuan ini dan yang lainnya untuk meneliti sifat-sifat matematis jaring-jaring makanan.

Disadur dari: https://en.wikipedia.org/

Selengkapnya
Jaring Makanan: Jenis dan Sejarah

Pertambangan dan Perminyakan

Terungkap: Fakta Menarik tentang Teknik Pertambangan dan Perminyakan yang Tidak Anda Ketahui Sebelumnya

Dipublikasikan oleh Dewi Sulistiowati pada 12 Februari 2025


Ada banyak kesalahpahaman seputar teknik pertambangan dan perminyakan, meskipun kedua aspek teknik ini menghasilkan bahan mentah yang digunakan dalam setiap tahap kehidupan manusia.

Profesor Ismet Canbulat, Kepala Sekolah Teknik Sumber Daya Mineral dan Energi di UNSW, menekankan ketidakmampuan manusia untuk berfungsi tanpa industri sumber daya.

"Mineral dan energi sangat penting untuk kelangsungan hidup umat manusia. Kelangsungan hidup dengan cara, bahwa kita mendukung banyak industri, termasuk konstruksi medis, air, ruang angkasa, pertanian, apa saja, dan semua yang dapat Anda pikirkan.

"Industri pertambangan adalah bagian dari solusi, bukan bagian dari masalah. Kami di sini untuk membantu umat manusia bertahan hidup, dan kami mendukung umat manusia melalui berbagai industri dan dalam industri tersebut tanpa mineral, misalnya, kita tidak akan mendapatkan obat yang kita butuhkan. Kita tidak akan bisa bertani, berkomunikasi, membangun, atau melakukan transportasi.

"Teknik pertambangan diperlukan untuk mendukung energi terbarukan, sementara teknik perminyakan akan mendukung penyerapan karbon dan industri nol karbon. Oleh karena itu, ketika Anda menggabungkan keduanya, kami ditakdirkan untuk membantu umat manusia untuk mencapai masa depan yang bebas karbon."

Berikut adalah beberapa hal yang mungkin belum Anda ketahui atau salah paham tentang teknik pertambangan dan perminyakan.

Apa sebenarnya teknik pertambangan dan perminyakan itu?

Teknik pertambangan tidak hanya berurusan dengan batu bara dan teknik perminyakan juga tidak hanya berurusan dengan minyak dan gas.

Ada kesalahpahaman besar bahwa industri pertambangan dan perminyakan hanya berpusat pada bahan bakar fosil. Hal ini tidak benar karena industri ini merupakan bagian integral dalam memberi daya dan membentuk kehidupan kita sehari-hari. Teknik pertambangan bertanggung jawab untuk mengekstraksi mineral dan bahan geologi penting dari bumi. Di sisi lain, teknik perminyakan berurusan dengan pemulihan hidrokarbon yang dapat berupa minyak mentah atau gas alam.

Jika Anda melihat tabel periodik, banyak logam, metaloid, dan gas mulia yang digunakan dalam segala hal yang diciptakan dan dikembangkan saat ini. Dari emas, aluminium, timbal, seng, hidrokarbon, dan masih banyak lagi, berkat teknik pertambangan dan perminyakan, sumber daya ini dapat digunakan untuk berbagai hal yang kita butuhkan.

Mulai dari pembangkit energi untuk listrik, pengolahan makanan, pengembangan senyawa berbasis logam dalam bidang kesehatan, pengembangan barang elektronik seperti ponsel pintar Anda dan masih banyak lagi.

Fakta menarik: dibutuhkan lebih dari 40 logam yang ditambang dan tanah jarang untuk memproduksi sebuah ponsel pintar (Minerals Council of Australia).

Industri sumber daya mineral dan energi menghidupi bangsa

Selama epidemi Covid-19, industri mineral dan sumber daya yang menghidupi negara ini. Meskipun terjadi pemutusan hubungan kerja di industri lain, terdapat pertumbuhan lapangan kerja yang nyata di industri sumber daya - lebih dari 15 ribu pekerjaan ditambahkan, yang membuktikan kestabilannya. Australia diperkirakan akan menghasilkan lebih dari Rp4.237.350 miliar dalam ekspor sumber daya tahun ini saja.

Industri ini menyumbang lebih dari 8% ekonomi Australia dan menghasilkan 70% ekspor dari Australia. Hal ini menghasilkan lebih dari Rp4.074.375 miliar pendapatan per tahun dan telah membuat Australia menjadi negara dengan pertumbuhan tanpa gangguan terpanjang di negara maju.

Teknik pertambangan dan perminyakan dibutuhkan dalam memerangi perubahan iklim

Tidak akan ada masa depan yang bebas karbon tanpa mineral-mineral penting dan teknologi yang dibutuhkan saat ini, kecuali industri kita. Industri mineral dan sumber daya energi adalah pemimpin dalam mendukung upaya energi di masa depan. Jika Anda peduli dengan alam dan ingin mengurangi dampak dari perubahan iklim, maka mineral dan sumber daya energi harus menjadi titik fokus baru Anda.

Energi surya dimungkinkan oleh pertambangan. Pembuatan panel surya membutuhkan mineral penting seperti tembaga untuk kabel, boron untuk semi-konduktor dan silikon untuk panel yang tidak dapat diproduksi tanpa penambangan. Konverter katalitik yang mengurangi emisi dari gas buang menjadi gas yang lebih ramah lingkungan adalah ciptaan lain yang dimungkinkan. Perangkat ini menggunakan mineral seperti besi, platina, nikel, dan masih banyak lagi.

Mobil listrik semakin populer dan pada tahun 2030, mobil listrik akan menyumbang 48% dari penjualan semua mobil baru. Ini adalah bagian dari masa depan energi terbarukan, tetapi tidak dapat dilakukan tanpa pertambangan. Baterai, kaca depan mobil, konektor, rem semuanya menggunakan logam yang berasal dari pertambangan.

Karbon dioksida (CO2) adalah produk sampingan yang dilepaskan dari aktivitas manusia dan penggunaan industri, terutama dari pembangkit listrik dan transportasi. Untuk menyerap produksi CO2 dari atmosfer, diperlukan penangkapan dan penyimpanan CO2. Metode yang disebut penyerapan karbon ini mendorong penggunaan energi terbarukan untuk mengurangi CO2 dan kemudian menyimpannya di dalam reservoir minyak.

CCUS (Carbon Capture Utilization and Storage) adalah kontributor terbesar ketiga untuk mengurangi emisi karbon, setelah efisiensi energi dan energi terbarukan. Gambar dari IEA (Badan Energi Internasional) 2019.

Oleh karena itu, untuk mencapai masa depan yang netral karbon, CCUS sangat penting dalam menyimpan CO2. CCUS menggeser ekonomi yang mendukung energi terbarukan dan merupakan bagian penting di masa depan menuju netralitas ini. Untuk mencapai netralitas karbon, Badan Energi Internasional (IEA) telah menyarankan untuk menggunakan banyak teknologi termasuk menggunakan energi terbarukan, penyimpanan CO2, dan solusi hemat energi seperti energi panas bumi. Hal ini tidak akan mungkin terjadi tanpa rekayasa perminyakan.

Banyak teknologi masa depan yang sedang dikembangkan dan digunakan dalam teknik pertambangan dan perminyakan

Seiring dengan percepatan masyarakat menuju masa depan yang lebih sirkular dan berkelanjutan, industri sumber daya menemukan cara-cara inovatif untuk mengubah sumber daya alam kita yang terbatas menjadi mata air inovasi dan peluang.

Salah satu metode ini adalah melalui rehabilitasi sumber daya. Ketika sumber daya telah diekstraksi dari bumi, rehabilitasi sumber daya mengembalikan lahan ke kondisi awal dan bahkan dapat meningkatkan ekosistem ke kondisi yang baru, sehingga Anda tidak akan pernah percaya bahwa area tersebut dulunya adalah tempat ekstraksi sumber daya. Hal ini dapat mencakup rehabilitasi dengan vegetasi, terumbu karang laut, atau bahkan mengubahnya menjadi lahan pertanian.

Karena pertambangan dan perminyakan merupakan industri kunci untuk pertumbuhan sosial ekonomi, banyak teknologi masa depan yang akan digunakan dalam industri ini. Otomasi adalah teknologi utama yang digunakan dalam industri sumber daya dengan sebagian besar proses manual menjadi otomatis dengan meningkatnya kendaraan tanpa pengemudi. Ini berarti bahwa keselamatan di tambang akan meningkat dan mesin-mesin dapat dioperasikan dari jarak jauh oleh para insinyur pertambangan yang akan memastikan bahwa teknologi tersebut beroperasi secara efisien.

Penambangan di luar bumi dulunya hanya merupakan fiksi, namun dengan cepat menjadi kenyataan. Karena sumber daya yang terbatas, penelitian sedang dilakukan untuk mencari sumber daya potensial yang dapat diekstraksi dari Bulan dan planet-planet lain seperti Mars. Sumber daya ini kemudian dapat digunakan untuk menambah sumber daya di bumi dan bahkan mungkin memulai peradaban di bulan. Hal ini bahkan diperkirakan akan menjadi sebuah kemungkinan dalam 30 tahun mendatang!

Analisis data adalah area lain yang semakin berkembang. Dengan meningkatnya otomatisasi dan kecerdasan buatan, jumlah data yang dihasilkan pun semakin besar. Fusi data yang dioptimalkan dengan cepat digunakan untuk membuat keputusan yang lebih efisien. Proyek-proyek penelitian dilakukan di Minerals and Energy Resources Engineering (MERE) dengan menggunakan analisis data visualisasi untuk memecahkan masalah industri dan memanfaatkannya untuk operasi di masa depan. Di Lab Mine Internet of Things (MIoT) dan Indoor Positioning Indoor Navigation (IPIN), analisis data digunakan untuk memberi informasi kepada para insinyur tentang operasi, membuat keputusan yang lebih baik, meningkatkan produktivitas, dan meningkatkan keselamatan.

Ini adalah bidang yang mudah beradaptasi - keragaman pilihan karier

Keterampilan yang dipelajari di bidang teknik pertambangan dan perminyakan dapat digunakan di industri lain selain industri sumber daya. Insinyur dapat menggunakan keterampilan yang dipelajari di bidang lain. Di lapangan, baik insinyur perminyakan maupun pertambangan perlu bekerja dengan para profesional lain seperti ahli geologi dan ilmuwan.

Baik gelar teknik pertambangan dan perminyakan dapat mengarah pada jalur karier yang beragam yang tidak melibatkan pekerjaan dalam eksplorasi sumber daya. Adalah kesalahpahaman besar bahwa insinyur pertambangan hanya dapat bekerja di tambang, atau insinyur perminyakan hanya bekerja di anjungan minyak. Lulusan dari kedua bidang tersebut dapat bekerja di bidang manajemen, konsultasi, inspeksi, ekonom, dan bahkan sebagai insinyur di industri lain.

Hal ini karena keahlian yang dipelajari bersifat serbaguna dan menjadi dasar bagi rekayasa dalam disiplin ilmu lain. Ada banyak peluang yang disediakan khusus untuk lulusan teknik pertambangan dan perminyakan. Lulusan juga dapat bekerja di industri lain seperti keuangan, pemerintahan, konstruksi dan banyak lagi.

Peluang yang berlimpah - fleksibilitas dengan jadwal kerja

Salah satu keunggulan industri sumber daya adalah fleksibilitas jam kerja dan banyaknya peluang perjalanan yang ditawarkan. Saat ini, terutama karena para pekerja secara aktif mencari lingkungan kerja yang fleksibel, industri sumber daya telah menawarkan opsi ini sebelum epidemi.

Karena kebutuhan untuk bekerja di lokasi, sebagian besar pekerja yang dipekerjakan di industri sumber daya akan melakukan perjalanan tidak hanya secara nasional tetapi juga internasional ketika diperlukan. Para pekerja biasanya melakukan komunikasi jarak jauh (LDC), baik terbang masuk dan terbang keluar (FIFO), atau mengemudi masuk dan mengemudi keluar (DIDO) ke lokasi kerja yang jauh. Mereka kemudian akan menghabiskan waktu mulai dari 1 minggu hingga beberapa minggu di lokasi kerja dan kemudian menghabiskan beberapa minggu di rumah. Ini menjadikannya peran yang sempurna yang cocok bagi mereka yang ingin beristirahat dari pekerjaan untuk sementara waktu atau pergi berlibur. Contoh jadwal kerja yang umum bagi seorang insinyur pertambangan jarak jauh adalah bekerja 2 minggu bekerja dan 2 minggu libur, bekerja selama 12 jam per shift. Hal ini sepenuhnya tergantung pada pekerja untuk memilih opsi mana yang paling sesuai dengan gaya hidup mereka.

Fleksibilitas ini memungkinkan individu untuk menjaga keseimbangan antara pekerjaan dan kehidupan. Pekerja lain mungkin memilih untuk tinggal lebih dekat ke lokasi terpencil di Australia Barat atau Queensland. Pekerja melaporkan pengalaman positif bekerja dengan sistem FIFO atau DIDO, gaji yang tinggi, fleksibilitas jadwal kerja, kesempatan bepergian, lamanya shift dan ketersediaan posisi.

Ini bukan berarti bahwa peran di kantor dan di dalam ruangan tidak ada, karena posisi manajer dan peneliti sangat banyak di laboratorium dan kantor. Lingkungan kerja dapat bervariasi dari waktu ke waktu, mulai dari lokasi pengeboran terpencil hingga kantor dan laboratorium penelitian.

Sains, Teknologi, Teknik, dan Matematika mungkin merupakan komponen utama, tetapi tidak semuanya.

Sama seperti industri lainnya, ada keterampilan lunak penting yang harus dimiliki oleh setiap pekerja. Industri sumber daya mencari latar belakang teknis yang kuat serta keterampilan komunikasi yang sangat baik sehingga para insinyur dapat bekerja dengan rekan satu tim baik di lokasi maupun di luar lokasi. Kolaborasi

Kreativitas adalah keterampilan lain yang sangat penting dan mungkin yang paling penting. Hal ini karena ketika ada masalah teknik yang mempengaruhi masyarakat, dibutuhkan kreativitas yang tinggi untuk menghasilkan ide-ide yang dapat memberikan solusi untuk masalah yang sedang berlangsung. Inovasi adalah aspek penting dalam bidang teknik dan kemampuan untuk membayangkan solusi potensial dan mengeksplorasi ketidakpastian adalah keterampilan yang sangat penting untuk dimiliki.

Membangun jaringan di dalam industri adalah keterampilan lainnya. Di Teknik Sumber Daya Mineral dan Energi (MERE), terdapat hubungan yang kuat antara sekolah dan mitra industri yang telah menghasilkan kolaborasi dengan industri dalam beberapa proyek penelitian. Mentoring industri juga ditawarkan kepada para mahasiswa untuk memastikan bahwa para mahasiswa mendapatkan keterampilan berjejaring dengan mitra industri dan menjadi sadar akan industri dan siap setelah lulus.

Peluang bagi perempuan

Dibandingkan dengan banyak industri lain, rata-rata perempuan yang bekerja di industri sumber daya mineral dan energi di Australia memiliki penghasilan yang lebih tinggi daripada rata-rata perempuan di industri lain. Di industri pertambangan, perempuan hanya berjumlah sekitar 19% dari angkatan kerja di industri ini, yang mendorong para manajer perekrutan untuk secara aktif mencari lebih banyak perempuan. Perempuan di industri sumber daya melaporkan bahwa mereka dihormati di tempat kerja mereka dan merasa setara dengan rekan-rekan pria mereka.

Banyak perempuan yang bekerja di sektor sumber daya juga mengaku merasakan kepuasan tersendiri bekerja di industri yang didominasi oleh laki-laki, karena tantangan yang ada membuat keberhasilan lebih besar. Menjadi minoritas dalam industri semacam itu dapat memotivasi meskipun banyak tantangan yang dihadapi, etos kerja yang kuat serta pengakuan yang lebih besar atas pencapaian seseorang adalah beberapa manfaat yang dapat diraih.

Banyak langkah yang telah diambil untuk meningkatkan partisipasi perempuan dalam industri sumber daya alam, mulai dari meningkatkan cuti melahirkan hingga mengurangi kesenjangan upah.

Disadur dari: unsw.edu.au

Selengkapnya
Terungkap: Fakta Menarik tentang Teknik Pertambangan dan Perminyakan yang Tidak Anda Ketahui Sebelumnya

Teknik Industri

Ergonomi dalam Keselamatan di Tempat Kerja: Definisi, Prinsip, dan Aplikasi

Dipublikasikan oleh Dewi Sulistiowati pada 12 Februari 2025


Keselamatan di tempat kerja adalah masalah penting bagi organisasi di semua industri. Menciptakan lingkungan kerja yang ergonomis sangat penting untuk meningkatkan kesehatan, produktivitas, dan kenyamanan karyawan. Ergonomi, yang melibatkan penyesuaian tempat kerja agar sesuai dengan kemampuan dan keterbatasan manusia, merupakan komponen kunci dari program keselamatan yang efektif. Artikel ini akan membahas definisi dan ruang lingkup ergonomi, prinsip-prinsip intinya, aplikasi untuk mencegah gangguan muskuloskeletal, manfaat di tempat kerja, penilaian dan implementasi solusi, alat dan perlengkapan ergonomis, dan pentingnya desain yang berpusat pada manusia secara keseluruhan.

Pendahuluan

Ergonomi, yang juga dikenal sebagai rekayasa faktor manusia, adalah praktik mendesain produk, sistem, dan lingkungan fisik sesuai dengan cara manusia beroperasi, berpikir, dan berfungsi secara fisiologis. Asosiasi Ergonomi Internasional mendefinisikan ergonomi sebagai “disiplin ilmu yang berkaitan dengan pemahaman interaksi antara manusia dan elemen-elemen lain dari sebuah sistem, dan profesi yang menerapkan teori, prinsip, data, dan metode pada desain untuk mengoptimalkan kesejahteraan manusia dan kinerja sistem secara keseluruhan.” Pada intinya, ergonomi bertujuan untuk menyesuaikan tempat kerja di sekitar manusia, bukan memaksa manusia untuk beradaptasi dengan kendala pekerjaan.

Ketika diterapkan pada kesehatan dan keselamatan kerja, ergonomi bekerja untuk mengidentifikasi dan mengurangi faktor risiko yang dapat menyebabkan cedera atau penyakit. Gangguan muskuloskeletal (MSD) seperti sakit punggung atau sindrom lorong karpal merupakan masalah besar di banyak industri. Desain stasiun kerja, postur tubuh yang tidak tepat, gerakan berulang, dan aktivitas fisik yang berlebihan adalah penyebab umum. Menerapkan prinsip-prinsip ergonomis dapat secara signifikan mengurangi MSDs dan biaya yang terkait. Manfaat tambahannya termasuk peningkatan produktivitas, kepuasan karyawan, dan efisiensi operasional.

Artikel ini akan mengeksplorasi peran ergonomi yang beragam dalam menciptakan tempat kerja yang lebih aman dan produktif. Prinsip-prinsip ergonomi inti, dampaknya terhadap kesehatan muskuloskeletal, dan contoh-contoh aplikasi praktis akan dibahas.

Definisi dan ruang lingkup Ergonomi

Istilah “ergonomi” berasal dari bahasa Yunani, yaitu ergon (kerja) dan nomos (hukum). Sebagai sebuah bidang studi, ergonomi menggabungkan pengetahuan dari berbagai disiplin ilmu termasuk biomekanika, teknik industri, fisiologi, psikologi, antropometri, dan penelitian faktor manusia. Para ahli ergonomi menyumbangkan keahlian dari domain-domain ini untuk mengoptimalkan desain tempat kerja.

Beberapa area fokus utama dalam lingkup ergonomi meliputi:

  • Tata letak stasiun kerja, desain peralatan, dan pengoptimalan antarmuka
  • Faktor lingkungan seperti pencahayaan, kebisingan, getaran, dan suhu
  • Praktik keselamatan yang melibatkan postur tubuh, penanganan material, gerakan berulang
  • Faktor organisasi seperti jadwal kerja, durasi tugas, dan kebijakan istirahat

Asosiasi Ergonomi Internasional secara luas mendefinisikan tiga domain ergonomi: fisik, kognitif, dan organisasi. Ergonomi fisik membahas karakteristik anatomis dan fisiologis seperti ukuran tubuh, kemampuan bergerak, dan tekanan biomekanik. Ergonomi kognitif berkaitan dengan proses mental seperti persepsi, pengambilan keputusan, interaksi manusia dan komputer, dan manajemen beban kerja. Ergonomi organisasi menganalisis sistem organisasi, kebijakan, kerja tim, desain partisipatif, dan manajemen kualitas.

Prinsip-prinsip Ergonomi

Para ahli ergonomi menerapkan lensa yang berpusat pada manusia pada desain tempat kerja dengan menggunakan berbagai prinsip dan strategi. Sepuluh prinsip utama berfungsi sebagai fondasi:

  • Sesuaikan tugas dengan manusia, bukan memaksa manusia untuk menyesuaikan tugas. Stasiun kerja, peralatan, perlengkapan, dan tugas pekerjaan harus sesuai dengan kemampuan pekerja.
  • Desain untuk keragaman populasi manusia. Perbedaan usia, jenis kelamin, ukuran, kekuatan, dan disabilitas harus menjadi pertimbangan dalam menentukan penyesuaian yang disediakan.
  • Atur kontrol dan tampilan sesuai dengan penggunaan yang intuitif dan alur kerja yang berurutan. Komponen harus ditempatkan di tempat yang diharapkan dan mengikuti pola kerja alami.
  • Meminimalkan pengeluaran energi dan gerakan yang tidak perlu. Pekerjaan harus meminimalkan kelelahan dengan menghindari postur statis, menjangkau secara berlebihan, dan pengulangan.
  • Sediakan ruang yang cukup untuk pergerakan pengguna dan perubahan posisi. Ruang lantai yang cukup, ruang kaki, dan komponen yang dapat disesuaikan mengakomodasi pengguna yang berbeda.
  • Sesuaikan urutan operasional agar sesuai dengan kemampuan manusia. Waktu siklus yang optimal, jadwal kerja/istirahat, otomatisasi, dan gerakan makro vs mikro dapat mengurangi ketegangan.
  • Desain untuk kesederhanaan, kemudahan penggunaan, dan pemeliharaan. Kerumitan yang tidak perlu dalam kontrol, tampilan, atau prosedur perawatan dapat menimbulkan masalah keselamatan.
  • Pilih bahan dan desain untuk mengurangi tekanan kontak. Bantalan, kontur, dan kesesuaian membantu mendistribusikan tekanan dan getaran.
  • Patuhi standar desain ergonomis berdasarkan penelitian antropometri dan biomekanik. Standar membantu mengoptimalkan desain tempat kerja untuk tubuh manusia.
  • Libatkan pengguna dalam mock-up, evaluasi, dan umpan balik desain. Ergonomi partisipatif memanfaatkan wawasan pekerja.

Prinsip-prinsip berbasis bukti ini memberikan kerangka kerja untuk mengidentifikasi dan mengendalikan faktor risiko cedera dan penyakit. Prinsip-prinsip ini berfungsi sebagai panduan untuk segala hal, mulai dari dimensi stasiun kerja dan pegangan alat hingga antarmuka perangkat lunak dan prosedur pemeliharaan.

Ergonomi dan gangguan muskuloskeletal

Salah satu motivasi utama untuk menerapkan prinsip-prinsip ergonomis adalah mengurangi gangguan muskuloskeletal (MSD). MSDs melibatkan cedera pada otot, saraf, tendon, sendi, tulang rawan, atau cakram tulang belakang dan menyumbang hampir 70% dari cedera di tempat kerja menurut Administrasi Keselamatan dan Kesehatan Kerja (OSHA). Contoh yang umum terjadi adalah sindrom terowongan karpal, tendinitis, nyeri punggung bawah, sindrom leher tegang, dan jari putih bergetar.

Meskipun faktor risiko individu seperti usia atau tingkat kebugaran berperan, intervensi ergonomis menargetkan sumber utama MSDs - paparan pekerjaan seperti kekuatan, getaran, dan pengulangan. Pengerahan tenaga yang kuat, postur tubuh yang janggal, gerakan berulang, tekanan kontak, desain pegangan yang buruk, dan getaran yang terlokalisasi secara kumulatif merusak jaringan muskuloskeletal. Ketidaksesuaian stasiun kerja dengan dimensi tubuh pengguna dan pencahayaan atau suhu yang tidak optimal semakin meningkatkan risiko.

Mempraktikkan ergonomi berfungsi untuk mengenali dan mengendalikan paparan ini melalui penyesuaian stasiun kerja, kontrol administratif, desain ulang alat, dan perbaikan praktik kerja. Sebagai contoh, merotasi tugas atau memasukkan jeda mikro dapat mengurangi pengulangan. Menyediakan kursi, permukaan kerja, dan dudukan monitor yang dapat disesuaikan untuk mengakomodasi postur tubuh yang tepat. Sarung tangan anti-getaran, bantalan, atau desain ulang alat mengurangi transmisi getaran. Modifikasi ergonomis tersebut secara dramatis menurunkan insiden MSDs dan biaya kompensasi, medis, dan produktivitas pekerja yang terkait.

Manfaat ergonomi di tempat kerja

Selain mengurangi MSDs, desain lingkungan kerja yang ergonomis juga memberikan banyak manfaat lain bagi perusahaan dan karyawan:

  1. Peningkatan produktivitas - Pencahayaan yang tepat, suhu, kontrol kebisingan, dan desain peralatan yang berpusat pada manusia mengurangi ketidaknyamanan dan kelelahan untuk mempertahankan fokus dan motivasi kerja.
  2. Peningkatan kualitas - Perbaikan ergonomis yang mengurangi gangguan, ketegangan, dan beban kerja kognitif mendorong kewaspadaan dan akurasi yang lebih baik.
  3. Efisiensi operasional yang lebih baik - Alur kerja yang dioptimalkan, akses ke material, perawatan peralatan, dan desain yang intuitif meningkatkan hasil kerja dengan lebih sedikit waktu dan tenaga.
  4. Biaya cedera/penyakit yang lebih rendah - Berkurangnya klaim dan tingkat keparahan MSD berarti penghematan yang besar dalam pengeluaran medis, hari kerja yang hilang, dan modifikasi tugas.
  5. Mengurangi ketidakhadiran dan perputaran karyawan - Karyawan yang lebih sehat dan lebih nyaman mengambil lebih sedikit cuti sakit dan lebih kecil kemungkinannya untuk meninggalkan perusahaan.
  6. Peningkatan kepuasan karyawan - Pekerja mengalami lebih sedikit rasa sakit, kelelahan, dan frustrasi ketika tempat kerja sesuai dengan kebutuhan mereka.
  7. Peningkatan inklusivitas - Mengakomodasi berbagai kemampuan pengguna individu yang lebih luas membuat pekerjaan dapat diakses oleh beragam demografi.
  8. Reputasi perusahaan yang lebih baik - Komitmen terhadap kesejahteraan, keselamatan, dan inklusi karyawan meningkatkan citra publik dan daya tarik rekrutmen.
  9. Kepatuhan yang lebih besar - Mengikuti peraturan dan panduan ergonomis menunjukkan tanggung jawab sosial perusahaan.

Jika digabungkan, manfaat-manfaat ini jauh lebih besar daripada investasi di muka untuk menerapkan perbaikan ergonomi. Imbalan jangka panjangnya mencakup keuntungan bagi manusia dan operasional.

Penilaian dan solusi Ergonomis

Menyadari banyak manfaat potensial dari ergonomi membutuhkan analisis metodis dan implementasi yang dikoordinasikan di antara para ahli dan pekerja. Langkah-langkah yang umum dilakukan meliputi:

  1. Mengidentifikasi area masalah - Gunakan catatan cedera, umpan balik dari pekerja, pengamatan, dan analisis bahaya pekerjaan untuk menunjukkan risiko.
  2. Melakukan penilaian ergonomis - Menerapkan daftar periksa, pemodelan, rekaman video, sensor, atau perangkat lunak untuk mengevaluasi tuntutan pekerjaan dan kemampuan pekerja secara sistematis.
  3. Memprioritaskan intervensi - Tentukan masalah, lokasi, atau kelompok kerja mana yang harus ditangani terlebih dahulu berdasarkan tingkat keparahan dan kelayakan.
  4. Kembangkan solusi - Rancang modifikasi peralatan, kontrol administratif, pelatihan, atau perubahan prosedural untuk mengurangi risiko.
  5. Menerapkan kontrol yang dipilih - Menetapkan tanggung jawab, sumber daya, dan kerangka waktu untuk melaksanakan perbaikan ergonomi.
  6. Melatih tenaga kerja - Mendidik pekerja tentang prinsip-prinsip ergonomis, solusi baru, dan penggunaannya yang tepat.
  7. Mengevaluasi efektivitas - Penilaian tindak lanjut dan umpan balik dari pekerja membantu menentukan hasil dari perubahan.
  8. Lakukan penyempurnaan - Gunakan pelajaran yang diperoleh untuk mengoptimalkan solusi dan memperluas jangkauan program ergonomi.

Proses yang berpusat pada manusia ini mengumpulkan wawasan dari para ahli ergonomi dan pekerja yang secara langsung melakukan pekerjaan. Menyambut partisipasi dan umpan balik akan memberdayakan pekerja dalam membentuk lingkungan kerja mereka. Solusi yang diberikan dapat berkisar dari penyesuaian sederhana seperti memindahkan monitor lebih dekat hingga desain ulang peralatan kompleks yang membutuhkan keahlian teknik. Untuk mendapatkan manfaat yang optimal, perbaikan ergonomis harus menjadi upaya yang terus menerus dan berkembang.

Peralatan dan perlengkapan Ergonomis

Berbagai peralatan dan aksesori khusus membantu mewujudkan prinsip-prinsip ergonomis di tempat kerja. Contohnya antara lain:

  • Kursi yang dapat disesuaikan - Fitur seperti dudukan kursi, sandaran tangan, dan penyangga pinggang menyesuaikan dengan dimensi tubuh individu dan gerakan tugas.
  • Dudukan lengan yang dapat diartikulasikan - Lengan yang fleksibel memungkinkan pemosisian tampilan visual dan alat bantu secara individual sehingga mengurangi postur tubuh yang canggung.
  • Alas anti-kelelahan - Lantai yang empuk mengurangi ketegangan pada punggung dan kaki akibat tugas berdiri.
  • Stasiun kerja duduk-berdiri - Meja yang dapat disesuaikan ketinggiannya memungkinkan peralihan antara posisi duduk dan berdiri.
  • Perangkat lunak pengenalan suara - Memungkinkan pengoperasian komputer secara hands-free untuk mengistirahatkan otot-otot yang terlalu sering digunakan.
  • Pencahayaan tugas - Pencahayaan yang dilokalkan menghilangkan silau dan mengoptimalkan visibilitas untuk kebutuhan visual tertentu.
  • Keyboard ergonomis - Desain terpisah dan bersudut menempatkan tangan dan pergelangan tangan dalam posisi netral untuk mencegah ketegangan.
  • Perangkat input alternatif - Mouse genggam, trackball, panel sentuh, dan pena memiliki gerakan dan postur yang bervariasi.
  • Alat bantu penanganan material - Gerobak, alat bantu angkat, dan pegangan keseimbangan mengurangi gaya dorong/tarik untuk pengangkatan dan pengangkutan.
  • Sarung tangan dan alat anti-getaran - Membatasi transmisi getaran ke tangan untuk meredam efek Raynaud.
  • Alat bantu angkat pribadi - Berikan dukungan saat membungkuk, jongkok, atau menjangkau untuk mengurangi ketegangan pada punggung.

Pekerja harus dilatih untuk memilih, menyesuaikan, dan menggunakan alat bantu ergonomis ini dengan benar untuk mendapatkan manfaat yang maksimal. Berkonsultasi dengan ahli ergonomi dapat membantu mengidentifikasi solusi yang tepat yang disesuaikan dengan industri dan tugas yang terlibat.

Kesimpulan

Ergonomi memanfaatkan pengetahuan tentang perilaku dan fisiologi manusia untuk menyesuaikan lingkungan tempat kerja dan praktik keselamatan yang sesuai. Pendekatan yang berpusat pada manusia untuk desain tempat kerja ini bertujuan untuk meningkatkan kesehatan, produktivitas, kenyamanan, dan inklusi karyawan. Menerapkan prinsip-prinsip ergonomis secara substansial mengurangi risiko gangguan muskuloskeletal yang mahal dan melemahkan. Berbagai macam peralatan dan aksesori ergonomis tersedia untuk memfasilitasi manfaatnya. Meskipun beberapa investasi di muka diperlukan untuk melakukan penilaian dan modifikasi, keuntungan yang dihasilkan termasuk penghematan biaya medis, peningkatan produktivitas, pengurangan perputaran karyawan, efisiensi yang lebih besar, dan peningkatan reputasi perusahaan sangat sepadan dengan usaha yang dilakukan. Ergonomi harus menjadi elemen integral dari inisiatif kesehatan dan keselamatan kerja yang komprehensif.

Dengan pentingnya ergonomi di tempat kerja yang tidak dapat disangkal seperti yang diuraikan di atas, jelaslah bahwa pendekatan yang tepat terhadap desain dan peralatan dapat mengubah lingkungan kerja menjadi pusat produktivitas, kenyamanan, dan keselamatan. Namun, bagaimana cara memulai perjalanan menuju transformasi ini? Jaringan rumit dari prinsip-prinsip ergonomis, peraturan, dan aplikasi praktis mungkin tampak menakutkan. Namun, solusinya ada dalam jangkauan. Baik organisasi Anda baru saja memulai inisiatif ergonomis atau ingin menyempurnakan praktik yang sudah ada, solusi ergonomis kami yang dibuat khusus menyediakan alat bantu, keahlian, dan dukungan yang diperlukan untuk menciptakan tempat kerja yang berkembang dan berpusat pada manusia. Izinkan kami memandu Anda melalui proses penting ini untuk membuka potensi penuh tenaga kerja Anda, meminimalkan risiko, dan mendorong organisasi Anda menuju masa depan yang ditandai dengan keunggulan dan kesejahteraan.

Apakah Anda siap untuk mengubah keselamatan di tempat kerja Anda? 

Memperkenalkan Ergonomi di Fasilitas Industri - Pelatihan Keselamatan Online - solusi terobosan yang dirancang untuk para profesional yang rajin seperti Anda yang menghargai kesejahteraan dan produktivitas tenaga kerja mereka.

Di dunia di mana tuntutan fisik sangat tinggi, dan margin kesalahan sangat kecil, cedera ergonomis dapat menjadi pembunuh diam-diam. Sindrom terowongan karpal, tendinitis, nyeri punggung bawah - semua penyebab ini dapat melumpuhkan efisiensi, semangat kerja, dan keuntungan Anda.

Jangan biarkan hal ini menjadi kisah fasilitas industri Anda!

Kursus online eksklusif kami yang berdurasi penuh dirancang untuk membekali tim Anda dengan pengetahuan yang dapat mengubah pendekatan kerja mereka. Ini bukan hanya program pelatihan; ini adalah pengalaman transformasional yang bertujuan untuk memastikan umur panjang, efisiensi, dan kesuksesan.

 Apa yang ada di dalamnya? Berikut ini sekilas tentang program-program inovatif kami:

  1. Memahami Cedera Ergonomis: Lengkapi diri Anda dengan wawasan untuk mengenali dan menetralisir ancaman.
  2. Mencegah Masalah Tangan dan Pergelangan Tangan: Ucapkan selamat tinggal pada rasa sakit yang melumpuhkan yang menghabiskan waktu dan uang.
  3. Menghindari Cedera pada Lengan dan Bahu: Membentuk tenaga kerja yang tangguh dan siap menghadapi tantangan.
  4. Merawat Leher dan Punggung: Pahami bagian inti tubuh Anda untuk kesehatan total.
  5. Teknik Mengangkat Beban yang Aman: Angkat beban tidak hanya dengan beban yang berat, tetapi juga dengan standar keselamatan Anda!

Setiap modul disajikan dalam format interaktif yang lengkap, tersedia dalam bahasa Inggris dan Spanyol, dan dirancang untuk menarik, mendidik, dan memberdayakan.

Apakah Anda siap melakukan perubahan?

Investasikan masa depan Anda hari ini dengan pelatihan keselamatan online “Ergonomi Industri”. Ini lebih dari sekadar kursus; ini adalah komitmen untuk menjadi yang terbaik, sebuah jalan menuju tempat kerja yang lebih aman dan lebih kuat.

Ambil Tindakan Sekarang! Daftarkan tim Anda hari ini, dan jadilah bagian dari gerakan yang mendefinisikan ulang keselamatan industri.

Libatkan diri Anda dalam hari esok yang lebih aman, raih masa depan keunggulan industri. Karena tim Anda berhak mendapatkan yang terbaik, begitu juga Anda!

Disadur dari: https://www.onlinesafetytrainer.com

Selengkapnya
Ergonomi dalam Keselamatan di Tempat Kerja: Definisi, Prinsip, dan Aplikasi

Teknik Industri

9 Perguruan Tinggi Terbaik Jurusan Teknik Industri di Indonesia Versi EduRank 2023, Lulusan Teruji

Dipublikasikan oleh Dewi Sulistiowati pada 12 Februari 2025


Ini 9 perguruan tinggi dengan jurusan Teknik Industri terbaik di Indonesia versi EduRank 2023. Teknik Industri menjadi salah satu jurusan teknik yang banyak peminat setiap tahunnya. Sebab, lulusan Teknik Industri dipercaya memiliki karier yang mentereng dan gaji yang mumpuni.

Dari sekian banyak universitas dengan jurusan Teknik Industri, hanya ada sejumlah perguruan tinggi yang masuk kategori terbaik. Artikel kali ini akan mengulas 9 perguruan tinggi dengan jurusan Teknik Industri terbaik di Indonesia versi EduRank 2023 9 Perguruan Tinggi dengan Teknik Industri Terbaik Versi EduRank 2023

1. Institut Teknologi Bandung

Ranking Global (671)

Ranking Asia (195)

2. Institut Teknologi Sepuluh Nopember

Ranking Global (722)

Ranking Asia (217)

3. Universitas Sebelas Maret

Ranking Global ( 736)

Ranking Asia (228)

4. Binus University

Ranking Global (928)

Ranking Asia (314)

5. Universitas Indonesia

Ranking Global (937)

Ranking Asia (318)

6. Universitas Gadjah Mada

Ranking Global (987)

Ranking Asia (346)

7. Universitas Sumatra Utara

Ranking Global (988)

Ranking Asia (347)

8. Telkom University

Ranking Global (999)

Ranking Asia (357)

9. Universitas Mercu Buana

Ranking Global (1005)

Ranking Asia (360)

Sumber: https://edukasi.sindonews.com/

Selengkapnya
9 Perguruan Tinggi Terbaik Jurusan Teknik Industri di Indonesia Versi EduRank 2023, Lulusan Teruji

Teknik Industri

Masa Depan Teknik Industri di Industri Garmen

Dipublikasikan oleh Dewi Sulistiowati pada 12 Februari 2025


Apa itu Teknik Industri dalam industri garmen

Teknik Industri (IE) adalah proses mengoptimalkan proses, sistem, dan organisasi yang kompleks untuk meningkatkan efisiensi, produktivitas, dan kualitas. Ini melibatkan analisis dan desain sistem yang melibatkan orang, uang, material, energi, dan informasi, dengan tujuan mencapai output maksimum dengan input minimum. Itulah pengaruh utama teknik industri dalam industri garmen.

Bagaimana menjadi seorang Insinyur Industri

Menjadi seorang insinyur industri di industri garmen membutuhkan kesabaran, ketekunan, dan kerja keras. Perjalanan dimulai setelah ujian dewan kelas 10, kemudian diploma atau HSC, kemudian gelar sarjana yang diperlukan untuk latar belakang pendidikan. Kemudian, beberapa langkah dapat mempermudah dan membantu Anda menjadi seorang insinyur industri yang berkembang.

Kategori teknik industri

  1. Studi metode
  2. Pengukuran kerja

5 Keahlian yang dibutuhkan untuk menjadi seorang Insinyur Industri

  1. Kreativitas: Insinyur industri menghadapi banyak masalah di tempat kerja, oleh karena itu mereka membutuhkan solusi untuk berpikir kreatif; insinyur industri menemukan cara baru untuk memecahkan masalah, menganalisis cara yang ada, dan mencoba menemukan cara kreatif untuk meningkatkan proses tersebut untuk produktivitas yang lebih baik.
  2. Keterampilan berpikir kritis: Insinyur industri menganalisis masalah tersebut untuk menemukan solusi. Mereka mengumpulkan semua informasi yang relevan tentang masalah tersebut. Kemudian, mencari solusi terbaik dan membuat keputusan untuk itu. Itulah mengapa mereka membutuhkan pengetahuan tentang berpikir kritis.
  3. Komunikasi: Insinyur industri bekerja dengan pekerja, profesional teknik lainnya, dan staf manajemen lainnya; oleh karena itu, mereka memiliki keterampilan komunikasi yang kuat dan menggunakan keterampilan mendengarkan yang kuat saat bertemu dengan manajemen dan klien untuk mendiskusikan proyek mereka.
  4. Pemecahan masalah: Tujuan utama semua insinyur adalah menemukan masalah dan menyelesaikannya dengan cara yang paling efektif. Oleh karena itu, insinyur industri harus menjadi pemecah masalah yang kuat. Mereka dapat mengidentifikasi masalah, merancang solusi terbaik, dan mengimplementasikannya.
  5. Keterampilan matematika: Adalah hal yang umum bagi para insinyur industri untuk melakukan operasi matematika tingkat lanjut secara teratur. Mereka memiliki pengetahuan kalkulus, statistik, keuangan, aljabar, geometri, dan optimasi linier.

4 Tujuan teratas dari Teknik Industri dalam industri garmen

  1. Pengembangan sistem: Mereka menganalisis sistem dan menentukan cara terbaik untuk memperbaikinya untuk ekonomi yang lebih efektif.
  2. Analisis dan implementasi proses: Insinyur industri menganalisis proses dan memutuskan apakah proses tersebut bernilai tambah atau tidak bernilai tambah. Selain itu, proses pemborosan yang tidak bernilai tambah dihilangkan dan diimplementasikan.
  3. Mengurangi biaya: Temukan cara untuk menghilangkan proses yang boros, mengoptimalkan proses yang kompleks, dan mencapai manfaat yang paling signifikan dengan biaya terendah.
  4. Meningkatkan produksi dan produktivitas: Membuat proses kerja baru dan mengoptimalkan proses yang tidak biasa untuk produksi dan produktivitas yang lebih baik.

Peluang karir di Teknik Industri

Insinyur Industri memiliki peluang karir yang beragam, termasuk peran seperti insinyur manufaktur, manajer rantai pasokan, spesialis kontrol kualitas, dan analis riset operasi. Mereka memainkan peran penting dalam mengoptimalkan proses dan mendorong peningkatan berkelanjutan dalam organisasi.

Pentingnya Teknik Industri dalam industri garmen

Teknik industri berperan penting dalam industri garmen, mulai dari meningkatkan efisiensi dan optimalisasi proses hingga memastikan produk berkualitas dan mengurangi biaya. Pekerjaan departemen IE meliputi studi kerja, studi gerak, pengambilan sampel kerja, penyeimbangan lini, identifikasi dan penghilangan kemacetan, menemukan proses yang bernilai tambah atau tidak bernilai tambah, dan meminimalkan pemborosan waktu dan sumber daya. Dengan mengoptimalkan waktu siklus proses, insinyur industri membantu produsen garmen meningkatkan produktivitas mereka dan memenuhi tenggat waktu produksi yang ketat.

Manfaat Teknik Industri dalam industri garmen

Di pasar yang kompetitif saat ini, efisiensi, efektivitas biaya, dan kualitas penting untuk kesuksesan dalam industri garmen. Menerapkan teknik teknik industri menawarkan banyak manfaat yang secara signifikan dapat meningkatkan operasi dan mendorong pertumbuhan yang berkelanjutan.

  • Peningkatan efisiensi dan produktivitas
  • Pengurangan biaya melalui minimalisasi limbah
  • Peningkatan kualitas dan konsistensi produk
  • Pengiriman produk yang tepat waktu
  • Peningkatan produktivitas dan kepuasan tenaga kerja
  • Teknologi dan otomatisasi yang inovatif
  • Kelestarian lingkungan melalui praktik-praktik ramah lingkungan
  • Peningkatan kepuasan dan loyalitas pelanggan
  • Pertumbuhan dan skalabilitas jangka panjang
  • Analisis dan implementasi proses

Peran dan tanggung jawab Teknik Industri dalam industri garmen

  • Mengumpulkan rencana pemuatan lini dari Departemen Perencanaan
  • Menghadiri pertemuan Pra-Produksi (PP)
  • Mendiskusikan mesin, folder, attachment, dan tenaga teknis untuk masalah teknis dengan bagian pemeliharaan.
  • Membuat operation bulletin (OB) sesuai dengan tata letak kertas
  • Membuat line balancing sesuai dengan pencapaian SMV dalam waktu lima hari setelah layout
  • Cari tahu proses bottleneck dan selesaikan
  • Jika diperlukan, buatlah studi produksi selama 1 jam pada proses yang dibutuhkan
  • Memberikan target produksi harian dan menindaklanjuti pencapaian produksi.
  • Pemanfaatan tenaga kerja yang tepat dengan mengurangi proses bantuan yang tidak perlu.
  • Pembaruan matriks keterampilan setiap tiga bulan sekali.
  • Tindak lanjut studi produksi (operator yang tidak mencapai Target/Kapasitas)
  • Mengembangkan operator multi-keterampilan berdasarkan minat mereka dan memelihara catatan matriks keterampilan.
  • Pemantauan kegiatan terkait 5S setiap hari
  • Memastikan Efisiensi sesuai dengan kurva pembelajaran dan anggaran
  • Setiap hari, satu ECRS/Kaizen harus dilakukan

Kami memiliki artikel komprehensif tentang peran dan tanggung jawab insinyur industri di industri garmen.

Alat dan Teknik Industri

Alat-alat teknik industri digunakan untuk menentukan dan menganalisis masalah serta menemukan solusi. Berikut adalah beberapa alat yang paling umum digunakan.

  1. Studi waktu
  2. Studi gerak
  3. Studi metode
  4. Analisis proses

Alat-alat Lean Manufacturing

Selain itu, berbagai teknik digunakan dalam Teknik Industri, termasuk studi waktu dan gerakan, 8 Waste, Six Sigma, Lean manufacturing. Teknik-teknik ini membantu mengidentifikasi kemacetan, mengurangi pemborosan, dan meningkatkan Efisiensi secara keseluruhan.

Formula untuk Teknik Industri dalam Industri Garmen

Berikut adalah beberapa rumus yang berguna untuk insinyur industri yang bekerja di industri garmen. Rumus-rumus ini dapat membantu para insinyur industri di industri garmen untuk merencanakan, memantau, dan meningkatkan berbagai aspek proses produksi secara efektif. Berikut adalah 5 Rumus IE yang Berguna Sehari-hari di Industri Garmen

  • Rumus SMV (Nilai Menit Standar)
  • Perhitungan efisiensi
  • Penyeimbangan lini
  • Target/Kapasitas lini
  • Kapasitas operator

Kesimpulan

Teknik industri dalam industri garmen memainkan peran penting dalam industri pakaian jadi. Teknik industri mempelajari strategi yang mendorong efisiensi, mengurangi biaya, dan meningkatkan kualitas dalam manufaktur garmen. Mereka mengoptimalkan proses, mendesain dan meningkatkan metode kerja, dan mengimplementasikan hal-hal baru di tempat kerja. Mengurangi biaya dan pemborosan, serta meningkatkan produksi & produktivitas untuk meningkatkan Efisiensi. Itulah yang akan dilakukan oleh tim IE.

FAQ (Pertanyaan yang sering diajukan)

Apa itu Insinyur Industri di industri garmen?

Industrial Engineering (IE) adalah proses mengoptimalkan proses, sistem, dan organisasi yang kompleks untuk meningkatkan efisiensi, produktivitas, dan kualitas. Ini melibatkan analisis dan desain sistem yang melibatkan orang, uang, material, energi, dan informasi, dengan tujuan mencapai output maksimum dengan input minimum.

Apa peran Teknik Industri dalam industri Manufaktur?

Insinyur industri sangat penting untuk keberhasilan industri garmen. Dengan mengoptimalkan proses, memastikan kontrol kualitas, dan memaksimalkan efisiensi, mereka berkontribusi pada pertumbuhan dan daya saing industri.

Apa bentuk lengkap IE dalam industri garmen?

IE adalah singkatan dari Industrial Engineering (IE), sebuah profesi penting yang meningkatkan efisiensi dan produktivitas proses produksi garmen.

Disadur dari: https://garmentsdoctor.com/

Selengkapnya
Masa Depan Teknik Industri di Industri Garmen
« First Previous page 840 of 1.119 Next Last »