Wirausaha

Apa Itu Persaingan Usaha/Bisnis?

Dipublikasikan oleh Mochammad Reichand Qolby pada 27 Januari 2023


Persaingan Bisnis Menurut Para Ahli

1. Marbun (2003)

Persaingan usaha atau bisnis adalah usaha-usaha dari dua pihak/lebih perusahaan yang masing-masing bergiat memperoleh pesanan dengan menawarkan harga/syarat yang paling menguntungkan. 

2. August von Hayek

Persaingan dalam ekonomi terkait dengan mekanisme pasar terhadap harga-harga. Menurutnya secara singkat, sistem harga mentransfer informasi dengan cara yang paling singkat dan sederhana antara produsen dan konsumen. 

3. Dr. Rainer Adam

Persaingan adalah suatu mekanisme yang efektif dan efisien yang bertujuan untuk menemukan solusi-solusi baru atas masalah-masalah baru dan tantangan-tantangan baru yang selalu muncul dalam dunia ekonomi.

Teori Terhadap Persaingan Bisnis

1. Persaingan Sehat / Healthy Competition

    Persaingan bisnis secara sehat merupakan sebuah bisnis yang berlangsung dengan tidak adanya tindakan kriminal, persaingan          sehat ini menjamin untuk mengedepankan terhadap etika bisnis dalam berkompetisi.

2. Persaingan tidak sehat / cut troat competition

    Persaingan tidak sehat menggambarkan terjadinya penggunaan aktivitas terhadap perebutan pasar dengan menggunakan segala cara untuk menyaingi bisnis. Tujuannya ada salah satu pembisnis dapat menguasai pasar dan memiliki keuntungan yang banyak dengan tidak memikirkan pembisnis lainnya.

 

Sumber : majoo.id

 

 

Selengkapnya
Apa Itu Persaingan Usaha/Bisnis?

Project Management

Apa Itu Project Risk Management?

Dipublikasikan oleh Mochammad Reichand Qolby pada 26 Januari 2023


Project Risk Management

Proyek yang paling sukses berawal dari perencanaan dan pengelolaan yang efektif. Mengembangkan manajemen proyek dan menerapkan strategi mitigasi manajemen proyek yang teruji dapat membantu. Meski begitu, proyek yang berkembang paling baik pun akan memiliki risiko.

Cara terbaik mencegah yakni dengan menghadapinya langsung. Secara proaktif membuat rencana untuk menghadapi kejadian yang tidak pasti ini dengan rencana manajemen risiko dapat membantu Anda mengendalikan tim proyek bersiap menghadapi dengan tenang daripada terlihat tidak siap di tengah situasi yang tidak terduga. 

Jika belum pernah mengembangkan rencana manajemen risiko sebelumnya, Anda mungkin menanggung konsekuensi dari risiko tidak terduga pada proyek sebelumnya. Pelajari selengkapnya tentang manajemen risiko proyek, lalu cobalah enam langkah mudah ini untuk membuat rencana manajemen risiko sendiri.

6 Langkah Project Risk Management

1. Identifikasi

2. Analisis

3. Prioritas

4. Tetapkan Pemilik

5. Memantau Proses

6. Menanggapi Risiko

 

Sumber : asana.com

 

Selengkapnya
Apa Itu Project Risk Management?

Building Information Modeling

Apa itu High Rise Building?

Dipublikasikan oleh Mochammad Reichand Qolby pada 26 Januari 2023


High Rise Building

Definisi yang disebutkan Britannica, gedung-gedung tinggi pertama dibangun di Amerika Serikat pada tahun 1880-an. Bangunan ini rupanya muncul di daerah perkotaan di mana kenaikan harga tanah dan kepadatan penduduk yang besar. Sehingga menciptakan permintaan dan kebutuhan untuk bangunan yang tingginya secara vertikal daripada menyebar secara horizontal.

Bangunan bertingkat tinggi pun dibuat praktis dengan penggunaan rangka struktur baja dan selubung eksterior kaca. Pada pertengahan abad ke-20, bangunan seperti itu telah menjadi fitur standar lanskap arsitektur di sebagian besar negara di dunia. Faktor terpenting dalam desain bangunan bertingkat tinggi adalah kebutuhan bangunan untuk menahan gaya lateral yang ditimbulkan oleh angin dan potensi gempa. Sebagian besar bangunan tinggi memiliki rangka yang terbuat dari baja atau baja dan beton.

10 Karakteristik High Rise Building

1. Tinggi Bangunan

2. Jenis Struktur Bangunan

3. Luas Lantai

4. Typical

5. Keterbatasan Lahan

6. Pengaruh Angin dan Gempa yang Tinggi

7. Risiko TInggi

8. Kompleksitas Tinggi

9. Target Mulu yang Tinggi

10. Tuntutan Safety yang Tinggi

 

Sumber : rumah.com

Selengkapnya
Apa itu High Rise Building?

Building Information Modeling

Apa Itu Building Information Modelling (BIM)?

Dipublikasikan oleh Mochammad Reichand Qolby pada 26 Januari 2023


Building Information Modelling (BIM)

Membangun pemodelan informasi (BIM) adalah proses yang didukung oleh berbagai alat, teknologi, dan kontrak yang melibatkan pembuatan dan pengelolaan representasi digital dari karakteristik fisik dan fungsional suatu tempat. Membangun model informasi (BIM) adalah file komputer (seringkali tetapi tidak selalu dalam format hak milik dan berisi data hak milik) yang dapat diekstraksi, dipertukarkan, atau jaringan untuk mendukung pengambilan keputusan terkait aset yang dibangun. Perangkat lunak BIM digunakan oleh individu, bisnis, dan lembaga pemerintah yang merencanakan, merancang, membangun, mengoperasikan, dan memelihara bangunan dan beragam infrastruktur fisik, seperti air, sampah, listrik, gas, utilitas komunikasi, jalan, kereta api, jembatan, pelabuhan, dan terowongan.

BIM Dalam Manajemen Konstruksi

Partisipan dalam proses pembangunan terus-menerus ditantang untuk menghasilkan proyek yang berhasil meskipun dengan anggaran yang ketat, staf yang terbatas, jadwal yang dipercepat, dan informasi yang terbatas atau bertentangan. Disiplin penting seperti desain arsitektural, struktural dan MEP harus terkoordinasi dengan baik, karena dua hal tidak dapat terjadi pada tempat dan waktu yang sama. BIM juga dapat membantu deteksi tabrakan, mengidentifikasi lokasi perbedaan yang tepat.

Konsep BIM membayangkan konstruksi virtual fasilitas sebelum konstruksi fisik aktualnya, untuk mengurangi ketidakpastian, meningkatkan keselamatan, menyelesaikan masalah, dan mensimulasikan serta menganalisis dampak potensial. Sumber tidak dapat diandalkan? Sub-kontraktor dari setiap perdagangan dapat memasukkan informasi penting ke dalam model sebelum memulai konstruksi, dengan peluang untuk pra-fabrikasi atau pra-perakitan beberapa sistem di luar lokasi. Limbah dapat diminimalkan di tempat dan produk dikirim tepat waktu daripada ditimbun di tempat.

Kuantitas dan sifat bersama bahan dapat diekstraksi dengan mudah. Lingkup pekerjaan dapat diisolasi dan ditentukan. Sistem, rakitan, dan urutan dapat ditampilkan dalam skala relatif dengan seluruh fasilitas atau kelompok fasilitas. BIM juga mencegah kesalahan dengan mengaktifkan konflik atau 'deteksi benturan' di mana model komputer menyoroti secara visual kepada tim di mana bagian-bagian bangunan (misalnya: rangka struktural dan pipa atau saluran layanan bangunan) mungkin berpotongan secara salah.

Sumber : Wikipedia

Selengkapnya
Apa Itu Building Information Modelling (BIM)?

Sistem satuan internasional

Sistem Satuan Internasional

Dipublikasikan oleh Admin pada 19 Desember 2022


Sistem Satuan Internasional (bahasa PrancisSystème International d'Unités atau SI) adalah bentuk modern dari sistem metrik dan saat ini menjadi sistem pengukuran yang paling umum digunakan. Sistem ini terdiri dari sebuah sistem satuan pengukuran yang koheren yang terpusat pada 7 satuan pokok, yaitu detikmeterkilogramamperekelvinmol, dan kandela, beserta satu set berisi 20 awalan untuk nama dan simbol satuan yang dapat digunakan saat menentukan kelipatan dan pecahan satuan. Sistem ini juga menentukan nama dari 22 satuan turunan, seperti lumen dan watt, untuk besaran umum lainnya.

Satuan pokok didefinisikan dalam bentuk konstanta alam tetap, seperti kecepatan cahaya dalam ruang hampa dan muatan elektron, yang dapat diamati dan diukur dengan sangat akurat. Tujuh konstanta digunakan dalam berbagai kombinasi untuk menentukan tujuh satuan pokok tersebut. Sebelum tahun 2019, artefak-artefak tertentu digunakan sebagai pengganti dari beberapa konstanta ini, yang terakhir adalah Purwarupa Kilogram Internasional, sebuah silinder yang terbuat dari paduan platina-iridium. Kekhawatiran mengenai stabilitasnya menyebabkan terjadinya revisi dari definisi unit dasar secara keseluruhan menggunakan konstanta alam, yang mulai berlaku pada tanggal 20 Mei 2019.[1]

Satuan turunan dapat didefinisikan dari satu atau beberapa satuan pokok dan/atau satuan turunan lainnya. Satuan-satuan tersebut diadopsi agar dapat memfasilitasi pengukuran besaran yang beragam. Sistem SI sedari awal dimaksudkan untuk menjadi sistem yang berkembang. Satuan dan awalan diciptakan, lalu definisi unit dimodifikasi melalui perjanjian internasional seiring dengan teknologi pengukuran yang semakin maju dan ketepatan pengukuran yang berkembang. Satuan turunan terbaru yang diberi nama, satuan katal, diciptakan pada tahun 1999.

Keandalan Sistem SI tidak hanya tergantung pada pengukuran baku yang presisi untuk satuan pokok yang didefinisikan dalam berbagai konstanta fisika alam tertentu, tetapi juga pada definisi yang presisi dari konstanta tersebut. Kumpulan konstanta yang mendasarinya harus dimodifikasi ketika konstanta-konstanta yang lebih stabil ditemukan, atau mungkin telah diukur secara lebih tepat. Sebagai contoh, pada tahun 1983, meter ditetapkan ulang sebagai jarak tempuh cahaya dalam ruang hampa dalam waktu sepersekian detik, sehingga membuat nilai kecepatan cahaya yang berkenaan dengan satuan yang didefinisikan tersebut menjadi tepat.

Alasan dari perkembangan sistem SI adalah beragamnya satuan yang bermunculan selama sistem satuan CGS (sentimeter–gram-detik) berlaku (khususnya ketidakkonsistenan antara sistem satuan elektrostatis dan satuan elektromagnetik) dan kurangnya koordinasi antara berbagai disiplin ilmiah yang menggunakan sistem CGS. Konferensi Umum untuk Ukuran dan Timbangan (bahasa PrancisConférence générale des poids et mesures – CGPM), yang dibentuk oleh Konvensi Meter pada tahun 1875, menyatukan banyak organisasi internasional agar dapat menetapkan definisi dan standar dari sistem baru serta membakukan aturan untuk menulis dan membaca pengukuran. Sistem SI dipublikasikan pada tahun 1960 sebagai hasil dari inisiatif yang dimulai pada tahun 1948. Sistem tersebut lebih didasarkan pada sistem satuan MKS (meter–kilogram-detik) dibanding varian-varian CGS.

Sejak saat itu, Sistem Satuan Internasional telah diadopsi secara resmi di hampir semua negara, kecuali Amerika SerikatLiberia, dan Myanmar.[2] Myanmar dan Liberia, meskipun tidak secara resmi, menggunakan satuan SI secara substansial. Komunitas ilmiah, militer, dan medis AS juga menggunakan satuan SI, meskipun dalam hidup sehari-hari penduduk AS masih menggunakan sistem imperial dan satuan Amerika Serikat. Negara seperti Britania RayaKanada, dan kepulauan-kepulauan tertentu di Laut Karibia telah menetapkan satuan SI sebagai satuan resmi, tetapi metrikasi masih diterapkan sebagian, yang menggunakan campuran dari satuan SI, imperial, dan satuan AS. Inggris telah mengadopsi secara resmi kebijakan metrikasi, tetapi rambu-rambu jalan di Britania Raya masih terus menggunakan mil. Kanada telah mengadopsi SI di hampir semua institusi pemerintah, kedokteran, dan sains, juga timbangan, laporan cuaca, rambu lalu lintas, dan stasiun pengisian BBM, tetapi satuan imperial masih legal digunakan dan sampai saat ini masih digunakan di beberapa sektor terutama perdagangan dan perkeretaapian. Produk-produk di Kanada dan Inggris terus, dalam konteks tertentu, diiklankan dalam pon daripada kilogram. Metrikasi tidak lengkap yang terjadi di Kanada, Britania Raya, dan terutama AS mengisyaratkan dampak dari kegagalan pemerintah untuk menindaklanjuti dengan serius program metrikasi masing-masing.

Satuan dan awalan[sunting | sunting sumber]

Sistem Satuan Internasional terdiri dari satu set satuan pokok, satu set satuan turunan SI dengan nama khusus, dan satu set pengali berbasis desimal yang digunakan sebagai awalan. Istilah Satuan SI mencakup ketiga kategori ini, tetapi istilah Satuan SI koheren hanya termasuk satuan pokok dan satuan turunan.[3]:103–106

Sistem Satuan Internasional

137 bahasa

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Logo Satuan SIKetujuh satuan pokok SI.

SimbolNamaBesaransdetikwaktummeterpanjangkgkilogrammassaAamperearus listrikKkelvinsuhu termodinamikamolmoljumlah zatcdkandelaintensitas cahaya

Tiga negara: Amerika SerikatMyanmar dan Liberia yang belum mengikuti sistem SI.

Sistem Satuan Internasional (bahasa PrancisSystème International d'Unités atau SI) adalah bentuk modern dari sistem metrik dan saat ini menjadi sistem pengukuran yang paling umum digunakan. Sistem ini terdiri dari sebuah sistem satuan pengukuran yang koheren yang terpusat pada 7 satuan pokok, yaitu detikmeterkilogramamperekelvinmol, dan kandela, beserta satu set berisi 20 awalan untuk nama dan simbol satuan yang dapat digunakan saat menentukan kelipatan dan pecahan satuan. Sistem ini juga menentukan nama dari 22 satuan turunan, seperti lumen dan watt, untuk besaran umum lainnya.

Satuan pokok didefinisikan dalam bentuk konstanta alam tetap, seperti kecepatan cahaya dalam ruang hampa dan muatan elektron, yang dapat diamati dan diukur dengan sangat akurat. Tujuh konstanta digunakan dalam berbagai kombinasi untuk menentukan tujuh satuan pokok tersebut. Sebelum tahun 2019, artefak-artefak tertentu digunakan sebagai pengganti dari beberapa konstanta ini, yang terakhir adalah Purwarupa Kilogram Internasional, sebuah silinder yang terbuat dari paduan platina-iridium. Kekhawatiran mengenai stabilitasnya menyebabkan terjadinya revisi dari definisi unit dasar secara keseluruhan menggunakan konstanta alam, yang mulai berlaku pada tanggal 20 Mei 2019.[1]

Satuan turunan dapat didefinisikan dari satu atau beberapa satuan pokok dan/atau satuan turunan lainnya. Satuan-satuan tersebut diadopsi agar dapat memfasilitasi pengukuran besaran yang beragam. Sistem SI sedari awal dimaksudkan untuk menjadi sistem yang berkembang. Satuan dan awalan diciptakan, lalu definisi unit dimodifikasi melalui perjanjian internasional seiring dengan teknologi pengukuran yang semakin maju dan ketepatan pengukuran yang berkembang. Satuan turunan terbaru yang diberi nama, satuan katal, diciptakan pada tahun 1999.

Keandalan Sistem SI tidak hanya tergantung pada pengukuran baku yang presisi untuk satuan pokok yang didefinisikan dalam berbagai konstanta fisika alam tertentu, tetapi juga pada definisi yang presisi dari konstanta tersebut. Kumpulan konstanta yang mendasarinya harus dimodifikasi ketika konstanta-konstanta yang lebih stabil ditemukan, atau mungkin telah diukur secara lebih tepat. Sebagai contoh, pada tahun 1983, meter ditetapkan ulang sebagai jarak tempuh cahaya dalam ruang hampa dalam waktu sepersekian detik, sehingga membuat nilai kecepatan cahaya yang berkenaan dengan satuan yang didefinisikan tersebut menjadi tepat.

Alasan dari perkembangan sistem SI adalah beragamnya satuan yang bermunculan selama sistem satuan CGS (sentimeter–gram-detik) berlaku (khususnya ketidakkonsistenan antara sistem satuan elektrostatis dan satuan elektromagnetik) dan kurangnya koordinasi antara berbagai disiplin ilmiah yang menggunakan sistem CGS. Konferensi Umum untuk Ukuran dan Timbangan (bahasa PrancisConférence générale des poids et mesures – CGPM), yang dibentuk oleh Konvensi Meter pada tahun 1875, menyatukan banyak organisasi internasional agar dapat menetapkan definisi dan standar dari sistem baru serta membakukan aturan untuk menulis dan membaca pengukuran. Sistem SI dipublikasikan pada tahun 1960 sebagai hasil dari inisiatif yang dimulai pada tahun 1948. Sistem tersebut lebih didasarkan pada sistem satuan MKS (meter–kilogram-detik) dibanding varian-varian CGS.

Sejak saat itu, Sistem Satuan Internasional telah diadopsi secara resmi di hampir semua negara, kecuali Amerika SerikatLiberia, dan Myanmar.[2] Myanmar dan Liberia, meskipun tidak secara resmi, menggunakan satuan SI secara substansial. Komunitas ilmiah, militer, dan medis AS juga menggunakan satuan SI, meskipun dalam hidup sehari-hari penduduk AS masih menggunakan sistem imperial dan satuan Amerika Serikat. Negara seperti Britania RayaKanada, dan kepulauan-kepulauan tertentu di Laut Karibia telah menetapkan satuan SI sebagai satuan resmi, tetapi metrikasi masih diterapkan sebagian, yang menggunakan campuran dari satuan SI, imperial, dan satuan AS. Inggris telah mengadopsi secara resmi kebijakan metrikasi, tetapi rambu-rambu jalan di Britania Raya masih terus menggunakan mil. Kanada telah mengadopsi SI di hampir semua institusi pemerintah, kedokteran, dan sains, juga timbangan, laporan cuaca, rambu lalu lintas, dan stasiun pengisian BBM, tetapi satuan imperial masih legal digunakan dan sampai saat ini masih digunakan di beberapa sektor terutama perdagangan dan perkeretaapian. Produk-produk di Kanada dan Inggris terus, dalam konteks tertentu, diiklankan dalam pon daripada kilogram. Metrikasi tidak lengkap yang terjadi di Kanada, Britania Raya, dan terutama AS mengisyaratkan dampak dari kegagalan pemerintah untuk menindaklanjuti dengan serius program metrikasi masing-masing.

Satuan dan awalan[sunting | sunting sumber]

Sistem Satuan Internasional terdiri dari satu set satuan pokok, satu set satuan turunan SI dengan nama khusus, dan satu set pengali berbasis desimal yang digunakan sebagai awalan. Istilah Satuan SI mencakup ketiga kategori ini, tetapi istilah Satuan SI koheren hanya termasuk satuan pokok dan satuan turunan.[3]:103–106

Satuan pokok[sunting | sunting sumber]

Artikel utama: Satuan pokok SI

Satuan pokok SI adalah fondasi dari sistem ini dan semua satuan turunan diturunkan dari sini.

Satuan turunan[sunting | sunting sumber]

Artikel utama: Satuan turunan SI

Satuan turunan pada SI dibentuk dengan perkalian, perpangkatan, atau pembagian satuan pokok.[3]:103[4]:3 Satuan turunan berhubungan dengan besaran turunan, contohnya kecepatan adalah besaran yang diturunkan dari besaran dasar waktu dan panjang, maka satuan turunan SI nya adalah meter per sekon (m/s). Dimensi satuan turunan dapat dituliskan dalam dimensi satuan pokok.

Satuan koheren adalah satuan turunan yang tidak memuat faktor numerik selain 1—besaran seperti gravitasi standar dan densitas air tidak termasuk definisi mereka. Pada contoh diatas, satu newton adalah gaya yang diperlukan untuk mempercepat sebuah benda bermassa satu kilogram sebesar satu meter per sekon kuadrat. Karena satuan SI untuk massa adalah kg dan akselerasi adalah m·s−2 dan F ∝ m × a, maka satuan gaya adalah perkalian dan menghasilkan kg·m·s−2 (atau satu newton). Karena newton adalah bagian dari satuan yang koheren, konstanta proporsionalnya adalah 1.

Untuk mudahnya, beberapa satuan turunan memiliki nama dan simbol khusus.[7] Beberapa satuan dapat digunakan kombinasi dengan nama dan simbol untuk satuan pokok dan satuan turunan untuk menuliskan satuan besaran turunan lainnya. Sebagai contoh, satuan SI untuk gaya adalah newton (N), satuan SI dari tekanan adalah pascal (Pa)—dan pascal dapat didefinisikan sebagai "newton per meter persegi" (N/m2).[8]

Awalan[sunting | sunting sumber]

Artikel utama: Awalan metrik

Awalan ditambahkan ke nama satuan untuk menghasilkan perkalian dan pembagian dari satuan awal. Semua perkalian adalah perpangkatan 10, dan diatas ratusan atau dibawah perseratus adalah perpangkatan 1000. Contohnya, kilo- menandakan perkalian seribu dan milli- menandakan perkalian perseribu, maka 1000 milimeter = 1 meter dan 1000 meter = 1 kilometer. Awalan ini tidak pernah digabung, maka sepersejuta meter disebut mikrometer, bukan milimilimeter. Perkalian kilogram dinamai dengan gram sebagai satuan pokok, maka sepersejuta kilogram adalah miligram, bukan mikrokilogram.[3]:122[9]:14

Satuan non-SI yang bisa digunakan bersama SI[sunting | sunting sumber]

Artikel utama: Satuan non-SI yang bisa digunakan bersama SI

Meskipun secara teori, SI dapat digunakan untuk pengukuran fisika apapun, CIPM mengakui beberapa satuan non-SI yang masih digunakan dalam ilmu teknis, saintifik, dan komersial. Selain itu, ada beberapa satuan lain yang telah digunakan ratusan tahun lamanya dan telah menjadi budaya yang kelihatannya masih akan terus digunakan di masa depan. CIPM telah memasukkan beberapa satuan tersebut dan mempublikasikannya dalam Brosur SI sehingga penggunaannya bisa konsisten di seluruh dunia. Beberapa satuan ini dikelompokkan menjadi beberapa kategori berikut.[3]:123–129[9]:7–11 [Note 1]

Liter adalah satuan non-SI yang diterima untuk digunakan bersama SI.
Dengan seperseribu meter kubik, liter tidak koheren dengan pengukuran SI.

Satuan non-SI yang diterima digunakan bersama SI[sunting | sunting sumber]

Beberapa satuan waktu, sudut, dan satuan metrik non-SI lainnya telah digunakan bertahun-tahun lamanya. Hampir semua orang menggunakan hari dan pembagian non-desimalnya sebagai basis waktu, dan tidak seperti kaki atau pound, satuan ini sama sekali tidak peduli dimanapun diukur. Radian, adalah 12π revolusi, memiliki keuntungan matematis namun rumit untuk navigasi, dan seperti waktu, satuan-satuan yang digunakan dalam navigasi memiliki kekonsistensi yang tinggi di seluruh dunia. Tonliter, dan hektare diadopsi CGPM tahun 1879 dan telah dipertahankan sebagai satuan yang dapat digunakan bersama dengan satuan SI, memiliki simbol masing-masing.

Satuan non-SI yang nilainya dalam satuan SI didapatkan secara eksperimen[sunting | sunting sumber]

Fisikawan sering kali menggunakan satuan pengukuran yang basisnya dari fenomena alam, terutama ketika besaran yang diasosiasikan dengan fenomena ini jauh lebih besar atau jauh lebih kecil daripada satuan SI yang ekivalen. Beberapa yang paling umum telah dimasukkan dalam Brosur SI bersama dengan simbol konsisten dan nilai yang diterima, tapi dengan peringatan bahwa nilai fisiknya perlu diukur.[Note 2]

elektronvoltsatuan massa dalton/atomikkonstanta Planck, dan massa elektron

Satuan non-SI lainnya[sunting | sunting sumber]

Sejumlah satuan non-SI yang tidak pernah dilarang secara formal oleh CPGM terus digunakan di seluruh dunia terutama di bidang kesehatan dan navigasi. Seperti dengan satuan pengukuran di Tabel 6 dan 7, berikut ini adalah satuan yang dikelompokkan oleh CIPM dalam Brosur SI untuk memastikan pemakaian yang konsisten, tetapi dengan rekomendasi bahwa penulis yang memakainya sebisanya mendefinisikan satuan tersebut dimanapun mereka memakainya.

barmilimeter raksaångströmnautical milebarnknot dan neper

Satuan Non-SI yang berhubungan dengan sistem satuan CGS dan CGS-Gaussian[sunting | sunting sumber]

Manual SI juga memasukkan sejumlah satuan pengukuran lama yang digunakan pada beberapa bidang ilmu khusus seperti geodesi dan geofisika atau beberapa pada literatur, terutama dalam elektrodinamika klasik dan relativistik. Satuan yang termasuk adalah:

ergdynepoisestokesstilbphotgalmaxwellgauss, dan œrsted.

Penulisan[sunting | sunting sumber]

Berikut aturan umum penulisan nilai kuantitas dan simbol SI.[10][11]

  1. Nilai kuantitas ditulis dengan angka yang diikuti spasi dan simbol satuan, mis. "2.21 kg", "7.3×102 m2", "22 K". Pengecualian diberikan untuk satuan sudut, menit, dan detik (°, ′, dan ″), yang dituliskan langsung setelah angka tanpa disisipkan spasi.
  2. Simbol satuan turunan yang dibentuk dengan perkalian dihubungkan dengan titik tengah (·) atau spasi non-penggal (non-break space), misalnya "N·m" atau "N m".
  3. Simbol satuan turunan yang dibentuk dengan pembagian dihubungkan dengan solidus (⁄), pangkat negatif, atau garis miring (/), misalnya "m⁄s", "m/s", atau "m s−1". Hanya satu solidus yang digunakan, misalnya "kg⁄(m·s2)" atau "kg·m−1·s−2", dan bukan "kg⁄m⁄s2".
  4. Simbol tidak diakhiri dengan tanda titik (.) karena merupakan entitas matematika dan bukan singkatan, kecuali jika berada di akhir kalimat.
  5. Simbol ditulis dengan huruf tegak (mis. m untuk meter) untuk membedakannya terhadap huruf miring yang digunakan oleh variabel (mis. m untuk massa).
  6. Simbol ditulis dengan huruf kecil (mis. "m", "s", "mol"), kecuali bagi simbol yang diturunkan dari nama orang (mis. "Pa" dari Blaise Pascal).
  7. Simbol awalan ditulis serangkai dengan satuan (mis. "k" dalam "km", "M" dalam "MPa", "G" dalam "GHz"). Semua simbol awalan yang lebih besar dari 103 (kilo) ditulis dengan huruf besar.

Perubahan pasca-1960[sunting | sunting sumber]

Perubahan pada SI[sunting | sunting sumber]

Sejak 1960 CGPM telah membuat beberapa perubahan pada SI. Diantaranya adalah:

  • CGPM ke-13 (1967) menamai ulang "derajat Kelvin" (simbol °K) menjadi "kelvin" (simbol K).[3]:156
  • CGPM ke-14 (1971) menambahkan Mol pada daftar satuan pokok.[12]
  • CGPM ke-14 (1971) menambahkan pascal (simbol Pa) untuk tekanan dan siemens (simbol S) untuk konduktansi listrik pada daftar nama satuan turunan.[3]:156
  • CGPM ke-15 (1975) menambahkan becquerel (simbol Bq) untuk "aktivitas radionuklida" dan gray (simbol Gy) untuk radiasi terionisasi pada daftar satuan turunan.[3]:156
  • Untuk membedakan "dosis terserap" dan "dosis ekivalen", CGPM ke-16 (1979) menambahkan sievert (simbol Sv) pada daftar satuan turunan sebagai satuan dosis ekivalen.[3]:158
  • CGPM ke-16 (1979) mengklarifikasi bahwa huruf "L" maupun "l" dapat digunakan sebagai simbol liter.[3]:159

Sphygmomanometer – alat tradisional yang mengukur tekanan darah menggunakan raksa dalam manometer. Tekanan diukur dalam "milimeter raksa" – bukan satuan SI.

  • CGPM ke-21 (1999) menambahkan katal (simbol kat) untuk aktivitas katalis pada daftar satuan turunan.[3]:165
  • Pada bentuk awalnya (1960), SI mendefinisikan awalan untuk nilai bervariasi dari pico- (simbol p) (nilai 10−12) sampai tera- (simbol T) (nilai 1012). Daftar ini ditambahkan pada CGPM ke-12 (1964),[3]:152 CGPM ke-15 (1975),[3]:158 dan CGPM ke-19 (1991)[3]:164 sehingga daftarnya menjadi selengkap saat ini.

Dipertahankannya satuan non-SI[sunting | sunting sumber]

Meskipun secara teoretis SI dapat digunakan untuk pengukuran fisika manapun, tetapi beberapa satuan non-SI masih muncul pada sumber-sumber saintifik, teknik, maupun komersial. Beberapa satuan sudah digunakan bertahun-tahun lamanya dan telah menjadi budaya dan kelihatannya akan terus digunakan di masa datang.[13] CIPM telah memasukkan beberapa satuan tersebut dan memasukkannya dalam brosur SI agar dapat digunakan secara konsisten.

Untuk melakukan standardisasi satuan yang berkaitan dengan ilmu kesehatan yang digunakan pada industri nuklir, CGPM ke-12 (1964) menerima penggunaan curie (simbol Ci) sebagai satuan non-SI untuk aktivitas radionuklida;[3]: 152 becquerel, sievert dan gray diadopsi kemudian. Juga, milimeter raksa (simbol mmHg) tetap dipertahankan untuk mengukur tekanan darah.[3]: 127

Sistem Besaran Internasional[sunting | sunting sumber]

Artikel utama: Sistem Besaran Internasional

Sistem Besaran Internasional (International System of Quantities, ISQ) adalah sistem yang berbasis pada 7 besaran dasar: panjangmassawaktuarus listriktemperatur termodinamikajumlah zat, dan intensitas cahaya. Besaran lainnya seperti luastekanan, dan hambatan listrik diturunkan dari besaran pokok ini. Sistem besaran internasional mendefinisikan besaran yang diukur dengan satuan-satuan SI.[14] Sistem besaran internasional didefinisikan dalam standar internasional ISO/IEC 80000, dan difinalisasikan tahun 2009 dengan publikasi ISO 80000-1.[15]

Brosur SI dan faktor konversi[sunting | sunting sumber]

Cover brosur The International System of Units

CGPM mempublikasikan brosur yang menampilkan dan mendefinisikan SI.[3] Versi resminya berbahasa Prancis, seperti Konvensi Meter.[3]:102 Maka memungkinkan untuk diinterpretasi lokal, khususnya mengenai nama dan istilah dalam bahasa yang berbeda, misalnya Institut Standar dan Teknologi Nasional (National Institute of Standards and Technology, NIST) Amerika Serikat memproduksi versi dokumen CPGM mereka sendiri (NIST SP 330) yang menggunakan interpretasi lokal dengan bahasa Inggris Amerika[4] dan dokumen lainnya (NIST SP 811) yang memberikan petunjuk umum mengenai penggunaan SI di Amerika Serikat dan konversi satuan antar SI dan sistem imperial.[9]

Penulisan dan perawatan brosur CPGM dilakukan oleh salah satu komite CIPM, Consultative Committee for Units (CCU). CIPM akan menominasikan kepala komite, tetapi komite ini di dalamnya juga termasuk perwakilan dari berbagai badan internasional lain selain perwakilan CIPM atau CGPM.[16][Note 3] Maka, komite ini menyediakan forum untuk badan-badan ini dan memberi masukan ke CPGM sehubungan dengan penyempurnaan SI.

Definisi istilah "besaran", "satuan", "dimensi" dll. yang digunakan dalam Brosur SI adalah kata-kata dari Kosakata metrologi internasional, sebuah publikasi yang diproduksi oleh Komite Bersama untuk Panduan dalam Metrologi (JCGM), kelompok yang terdiri dari 8 organisasi standar internasional di bawah pimpinan direktur BIPM.[17] Besaran dan persamaan yang mendefinisikan SI saat ini disebut sebagai Sistem Besaran Internasional (International System of Quantities, ISQ) dan diatur dalam Standar Internasional Besaran dan Satuan ISO/IEC 80000.

Evolusi SI[sunting | sunting sumber]

Perubahan SI[sunting | sunting sumber]

Biro Internasional untuk Ukuran dan Timbangan (BIPM) menjelaskan SI sebagai "sistem metrik modern".[3]:95 Perubahan teknologi telah mengarah pada evolusi dari definisi dan standar yang telah mengikuti dua hal utama, yaitu perubahan SI itu sendiri, dan klarifikasi tentang bagaimana cara menggunakan satuan ukuran yang bukan bagian dari SI, tetapi masih digunakan pada basis dunia.

Sejak tahun 1960, CGPM telah melakukan sejumlah perubahan pada satuan SI untuk memenuhi kebutuhan bidang-bidang tertentu, terutama di bidang kimia dan radiometri. Perubahan tersebut sebagian besar merupakan tambahan pada daftar satuan turunan terkenal, dan termasuk mol (simbol mol) untuk sejumlah zat, pascal (simbol Pa) untuk tekanan, siemens (simbol S) untuk konduktansi listrik, becquerel (simbol Bq) untuk "aktivitas pada sebuah radionuklida", gray (simbol Gy) untuk radiasi pengion, sievert (simbol Sv) sebagai satuan radiasi dari dosis ekuivalen, dan katal (simbol kat) untuk aktivitas katalitik[3]:156[3]:156[3]:158[3]:159[3]:165[18]

Mengakui kemajuan ilmu presisi pada skala besar dan kecil, kisaran kebijakan awalan yang ditentukan dari piko- (10−12) hingga tera- (1012) diperluas menjadi 10−24 hingga 1024.[3]:152[3]:158[3]:164

Definisi meter baku 1960, dalam hal panjang gelombang dari emisi spesifik atom kripton-86, digantikan dengan jarak yang ditempuh cahaya dalam ruang hampa dengan waktu tepat 1299.792.458 detik, sehingga kecepatan cahaya sekarang adalah konstanta alam yang ditentukan secara tepat.

Beberapa perubahan pada konvensi notasi juga telah dibuat untuk mengurangi ambiguitas leksikografis. Sebuah analisis di bawah naungan CSIRO, yang diterbitkan pada tahun 2009 oleh Royal Society, telah menunjukkan peluang untuk dapat menyelesaikan realisasi dari tujuan mengurangi ambiguitas tersebut sampai ke titik keterbacaan mesin dengan nol ambiguitas secara menyeluruh.[19]

Redenifisi 2019[sunting | sunting sumber]

Dependensi ketujuh satuan pokok SI konstanta fisika, yang diberi nilai numerik tepat dalam redenifisi 2019. Tidak seperti dalam definisi sebelumnya, satuan pokok semuanya berasal dari konstanta alam secara eksklusif.

Artikel utama: Redefinisi satuan pokok SI 2019

Setelah meter didefinisikan ulang pada tahun 1960, kilogram menjadi satuan pokok SI satu-satunya yang langsung berdasarkan artefak fisik tertentu, Purwarupa Kilogram Internasional (IPK), sebagai definisinya, dan dengan demikian menjadi satu-satunya satuan yang masih tunduk pada perbandingan berkala dari kilogram standar nasional masing-masing negara dengan IPK.[20] Selama Verifikasi Berkala Nasional Purwarupa Kilogram ke-2 dan ke-3, terjadi perbedaan yang signifikan antara massa IPK dan semua salinan resmi yang disimpan di seluruh dunia. Semua salinan tersebut secara nyata mengalami peningkatan massa seturut dengan IPK. Selama verifikasi luar biasa yang dilakukan pada persiapan tahun 2014 untuk pendefinisian ulang standar metrik, peningkatan massa yang berkelanjutan tidak dikonfirmasi. Meskipun demikian, ketidakstabilan residual dan ketidakstabilan yang tidak dapat direduksi dari IPK fisik merusak keandalan seluruh sistem metrik untuk pengukuran presisi dari skala kecil (atom) hingga skala besar (astrofisika).

Usulan dibuat bahwa:

  • Selain kecepatan cahaya, empat konstanta alam – konstanta Planck, muatan elementer, konstanta Boltzmann, dan bilangan Avogadro – harus didefinisikan agar memiliki nilai yang tepat.
  • Purwarupa Kilogram Internasional akan dihentikan.
  • Definisi kilogram, ampere, kelvin, dan mol saat ini harus direvisi.
  • Penekanan pada perkataan dari definisi satuan pokok harus diubah dari satuan eksplisit menjadi definisi konstan eksplisit.

Pada tahun 2015, Kelompok Tugas CODATA tentang Konstanta Dasar mengumumkan tenggat waktu untuk pengajuan khusus data untuk menghitung nilai akhir dari definisi baru.[21]

Definisi baru diadopsi pada CGPM ke-26 pada tanggal 16 November 2018, dan mulai berlaku pada tanggal 20 Mei 2019.[22]

Sejarah[sunting | sunting sumber]

Tanda batu di perbatasan Italia/Austro-Hungarian di Pontebba menunjukkan myriameter, satuan 10 km yang digunakan di Eropa Tengah pada abad ke-19.[23][24]

Artikel utama: Sejarah sistem metrik

Sistem metrik pertama kali diimplementasikan ketika Revolusi Prancis (1790-an) dengan hanya meter dan kilogram sebagai standard dari panjang dan massa.[Note 4] Tahun 1830-an Carl Friedrich Gauss memunculkan dasar untuk sebuah sistem yang koheren berbasis panjang, massa, dan waktu. Tahun 1860-an sekelompok orang dengan bantuan Asosiasi Kemajuan Sains Inggris (British Association for the Advancement of Science) merumuskan persyaratan untuk sebuah sistem satuan koheren dengan satuan pokok dan satuan turunan. Masuknya satuan listrik ke dalam sistem ini terhambat oleh begitu banyaknya satuan yang berbeda-beda, hingga tahun 1900 ketika Giovanni Giorgi mengidentifikasi perlunya mendefinisikan satu besaran listrik tunggal sebagai besaran pokok keempat.

Tahun 1875, Traktat Meter meloloskan pertanggungjawaban untuk memverifikasi kilogram dan meter untuk menarik kontrol dari pemerintah Prancis menjadi internasional. Tahun 1921, traktat ini diperlukas untuk semua besaran fisika termasuk satuan listrik yang awalnya didefinisikan tahun 1893.

Tahun 1954, Konferensi Umum tentang Berat dan Pengukuran (General Conference on Weights and Measures, CGPM) ke-10 mengidentifikasikan arus listrik sebagai besaran pokok keempat dan menambahkan 2 besaran pokok lain: temperatur dan intensitas cahaya—sehingga total menjadi 6. Satuannya masing-masing adalah meterkilogramsekonamperekelvin dan candela. Tahun 1971, besaran ketujuh ditambahkan ke dalam SI yaitu jumlah partikel yang dinyatakan dalam mol.

Awal perkembangan[sunting | sunting sumber]

Sistem metrik dikembangkan pertama kali tahun 1791 oleh sebuah komite Akademi Sains Prancis, ditugaskan oleh Majelis Nasional dan Louis XVI untuk menciptakan sebuah sistem pengukuran yang satu dan rasional.[25] Kelompok ini, didalamnya termasuk Antoine Lavoisier ("bapak kimia modern") dan matematikawan Pierre-Simon Laplace dan Adrien-Marie Legendre,[26]:89 menggunakan asas yang sama untuk menghubungkan panjang, volume, dan massa yang sebelumnya telah diajukan oleh pendeta Inggris John Wilkins tahun 1668[27][28] dan konsep yang menggunakan meridian bumi sebagai basis definisi panjang, pertama kali diajukan tahun 1670 oleh kepala biara Prancis Mouton.[29][30]

Carl Friedrich Gauss

Tanggal 30 Maret 1791, Majelis mengadopsi asas yang diusulkan oleh komite ini untuk sistem pengukuran desimal yang baru dan menyetujui survei Dunkirk dan Barcelona untuk menetapkan panjang meridian. Tanggal 11 Juli 1792, komite mengusulkan nama meterareliter dan grave untuk satuan panjang, luas, kapasitas, dan massa. Komite ini juga mengajukan bahwa perkalian satuan-satuan ini ditandai dengan awalan berbasis desimal seperti senti untuk perseratus dan kilo untuk seribu.[31]:82

William Thomson, (Lord Kelvin)

Thomson

James Clerk Maxwell

Maxwell

William Thomson (Lord Kelvin) dan James Clerk Maxwell memainkan peranan penting dalam pengembangan asas koherensi dan penamaan banyak sistem pengukuran.[7][32][33][34][35]

Hukum tanggal 7 April 1795 (loi du 18 germinal) mendefinisikan istilah gramme dan kilogramme, yang menggantikan istilah sebelumnya gravet dan grave. Tanggal 22 Juni 1799 (setelah Pierre Méchain dan Jean-Baptiste Delambre telah menyelesaikan survei meridian), standar definisi mètre des Archives dan kilogramme des Archives disimpan di Archives nationales. Tanggal 10 Desember 1799, hukum yang berisi sistem metrik untuk diadopsi di Prancis (loi du 19 frimaire[36]) akhirnya diloloskan.[37]

Di pertengahan awal abad ke-19 terjadi ketidak konsistenan pada pemilihan perkalian satuan pokok – terutama myriameter (10.000 meter) digunakan di Prancis dan sebagian Jerman, sedangkan kilogram (1000 gram) (daripada myriagram) lebih banyak digunakan untuk massa.[23]

Tahun 1832, matematikawan Jerman Carl Friedrich Gauss, diasisteni oleh Wilhelm Weber, secara implisit mendefinisikan detik sebagai satuan pokok ketika ia mengutip medan magnet bumi dalam milimeter, gram, dan detik.[32] Sebelumnya, kekuatan medan magnet bumi hanya dijelaskan dalam istilah relatif. Teknik yang digunakan Gauss untuk membuat persamaan torsi yang terinduksi pada magnet yang digantung dengan massa yang diketahui oleh medan magnet bumi dengan torsi yang diinduksikan pada sistem ekivalen dibawah gravitasi. Hasil perhitungannya memungkinkan ia untuk menetapkan dimensi yang didasarkan pada massa, panjang, dan waktu ke medan magnet.[38]

Tahun 1860-an, James Clerk MaxwellWilliam Thomson dan beberapa orang lainnya dengan bantuan Asosiasi Kemajuan Sains Inggris (British Association for the Advancement of Science), meresmikan konsep sebuah sistem satuan koheren dengan satuan pokok dan satuan turunan. Asas koherensi sukses digunakan untuk mendefinisikan sejumlah satuan pengukuran yang didasarkan pada sistem satuan sentimeter–gram–sekon (CGS), termasuk erg untuk energidyne untuk gayabarye untuk tekananpoise untuk viskositas dinamik dan stokes untuk viskositas kinematik.[34]

Konvensi Meter[sunting | sunting sumber]

Kosakata CGPMBahasa PrancisBahasa IndonesiaHalaman[39]étalonsStandar teknis5, 95prototypepurwarupa/prototipe [kilogram/meter]5,95noms spéciaux[Beberapa satuan turunan memiliki]
nama khusus16,106mise en pratiquemise en pratique
[Realisasi praktik][Note 5]82, 171

Artikel utama: Konvensi Meter

Sebuah inisiatif yang dimulai oleh Prancis untuk kerjasama internasional dalam metrologi menghasilkan penandatanganan Konvensi Meter tahun 1875.[26]:353–354 Awalnya konvensi ini hanya mencakup standar untuk meter dan kilogram. Satu set 30 purwarupa meter dan 40 purwarupa kilogram,[Note 6] dan tiap modelnya terdiri dari aloi 90% platinum-10% iridium, dibuat oleh perusahaan Inggris Johnson, Matthey & Co dan diterima CGPM tahun 1889. Masing-masing dipilih acak untuk menjadi Purwarupa Meter Internasional dan Purwarupa Kilogram Internasional yang menggantikan mètre des Archives dan kilogramme des Archives. Setiap negara anggota berhak untuk menyimpan satu dari purwarupa yang tersisa sebagai purwarupa nasional untuk negara tersebut.[40]

Sebuah Purwarupa Meter Nasional yang diperjelas, nomor seri 27, diberikan pada Amerika Serikat

Traktat ini menghasilkan 3 organisasi internasional untuk mengawasi standar pengukuran internasional:[41]

  • Konferensi Umum mengenai Berat dan Ukuran (Conférence générale des poids et mesures atau CGPM) – pertemuan delegasi dari semua negara anggota tiap 4-6 tahun sekali yang menerima dan mendiskusikan laporan dari CIPM dan mendorong pengembangan baru dalam SI
  • Comité international des poids et mesures (CIPM) – komite yang bertemu setiap tahun di BIPM dan terdiri dari 18 orang dengan pengetahuan sains tinggi, dipilih oleh CPGM untuk memberi saran dan masukan pada CPGM
  • Bureau international des poids et mesures (BIPM) – pusat metrologi internasional di Sèvres, Prancis yang menyimpan dan menjaga Purwarupa Kilogram Internasional, menyediakan layanan metrologi untuk CGPM dan CIPM, menjadi sekretariat bagi ketiga organisasi dan menjadi tuan rumah pertemuan. Awalnya tujuan meteorologi utamanya adalah kalibrasi berkala purwarupa meter dan kilogram nasional terhadap purwarupa internasionalnya.

Tahun 1921, Konvensi Meter diperluas untuk semua satuan fisika, termasuk ampere dan semua yang didefinisikan oleh Konferensi Kelistrikan Internasional Keempat di Chicago tahun 1893.[3]:96[33]

Bahasa resmi Konvensi Meter adalah Prancis[42] dan versi definitif dari semua dokumen resmi yang dipublikasikan oleh CPGM adalah versi berbahasa Prancis.[3]:94

Menuju SI[sunting | sunting sumber]

Artikel utama: Metrikasi

Peta dunia menunjukkan metrikasi, dengan kode warna menurut tahun konversi: dari tahun 1800 (hijau) sampai 1980 (merah). Hitam menandakan negara yang belum mengadopsi sistem-SI: Myanmar, Liberia, dan Amerika Serikat. Kanada dan Britania Raya keduanya memiliki penggunaan yang luas untuk kedua sistem satuan (metrik dan imperial), seperti batas kecepatan di Inggris dan laporan tinggi badan di Kanada.

Pada abad ke-19 ada 3 sistem satuan yang berbeda digunakan untuk pengukuran listrik: sistem berbasis CGS untuk satuan elektrostatissistem berbasis CGS untuk satuan elektromekanik (EMU) dan sistem satuan MKS ("sistem internasional")[43] untuk sistem distribusi listrik. Percobaan untuk menyelesaikan satuan listrik dalam panjang, massa, dan waktu menggunakan analisis dimensional terhalang kesulitan-dimensi yang digunakan tergantung apa sistem yang digunakan, ESU atau EMU.[35] Anomali ini akhirnya terpecahkan pada tahun 1900 ketika Giovanni Giorgi mempublikasikan karya tulisnya dimana ia mengajukan satuan pokok keempat selain tiga satuan pokok yang sudah ada. Satuan keempat itu dapat dipilih antara arus listriktegangan, atau hambatan listrik.[44]

Di akhir abad ke-19 dan awal abad ke-20, sejumlah satuan non-koheren berbasis gram/kilogram, sentimeter/meter, dan sekon, seperti Pferdestärke (tenaga kuda metrik) untuk daya,[45][Note 7] darcy untuk permeabilitas[46] dan penggunaan "milimeter raksa" untuk pengukuran barometrik dan tekanan darah juga berkembang, beberapa diantaranya memasukkan gravitasi standar dalam definisinya.

Di akhir Perang Dunia II, sejumlah sistem yang berbeda-beda digunakan di seluruh dunia. Beberapa diantaranya adalah variasi sistem metrik, sedangkan lainnya berbasis dari sistem kebiasaan. Tahun 1948, setelah penggambaran oleh International Union of Pure and Applied Physics (IUPAP) dan Pemerintah Prancis, Konferensi Umum mengenai Berat dan Ukuran ke-9 (CGPM) meminta CIPM untuk mengadakan studi internasional akan kebutuhan pengukuran untuk keperluan sains, teknik, dan pendidikan dan "untuk membuat rekomendasi untuk satu sistem pengukuran praktis tunggal, bisa digunakan oleh semua negara yang mengadopsi Konvensi Meter".[47]

Dari studi ini, pertemuan CPGM ke-10 tahun 1954 memutuskan bahwa sistem internasional seharusnya diturunkan dari 6 satuan pokok untuk menyediakan pengukuran bagi temperatur dan radiasi optik selain besaran mekanik dan [[satuan elektromagnetik SI|elektromagnetik. Enam satuan pokok yang direkomendasikan adalah meter, kilogram, sekon, ampere, derajat Kelvin (nantinya menjadi kelvin), dan candela. Tahun 1960, CPGM ke-11 memberi nama sistem ini Sistem Satuan Internasional, disingkat SI dari nama Prancisnya, Le Système International d'Unités.[3]:110[48] BIPM menjelaskan SI sebagai "sistem metrik modern".[3]:95 Besaran pokok ketujuh, mol, ditambahkan tahun 1971 melalui CPGM ke-14.[49]

Sumber: wikipedia.org

 

Selengkapnya
Sistem Satuan Internasional

Sistem satuan internasional

Sistem metrik

Dipublikasikan oleh Admin pada 19 Desember 2022


Sistem metrik adalah sistem pengukuran desimal yang disetujui secara internasional. Sistem ini menggunakan dasar dari mètre des Archives dan kilogramme des Archives yang pertama kali diperkenalkan Republik Prancis Pertama tahun 1799, tetapi dari tahun ke tahun definisi meter dan kilogram telah diperbaharui, dan sistem metrik telah ditambahkan untuk mengakomodasi banyak satuan baru. Meskipun banyak variasi sistem metrik muncul di akhir abad ke-19 dan awal abad ke-20, sebutan ini sekarang dikenal dengan "SI" atau "Sistem Satuan Internasional"—sistem pengukuran resmi yang digunakan hampir tiap negara di dunia.

Sistem metrik secara resmi telah didukung penggunaannya di Amerika Serikat sejak 1866, tetapi hingga saat ini AS menjadi satu-satunya negara maju yang tidak mengadopsi sistem metrik sebagai sistem pengukuran resminya. Banyak sumber lain juga mengatakan bahwa Liberia dan Myanmar sebagai beberapa negara lain yang juga tidak mengadopsi sistem metrik. Meskipun Inggris menggunakan sistem metrik untuk kebanyakan tujuan resmi, tetapi penggunaan sistem imperial juga banyak dipakai umum dan diperbolehkan oleh hukum.

Meski para pencetus pada awalnya bertujuan untuk melahirkan sistem yang bisa digunakan semua orang, tetapi terbukti penting untuk menggunakan unit prototipe untuk keperluan standar nasional atau otoritas lokal. Kontrol unit prototipe pengukuran ini dipegang oleh pemerintah Prancis sampai 1875, yang kemudian diserahkan ke Konferensi Umum tentang Berat dan Pengukuran (CGPM).[Note 1]

Dari awalnya, kelengkapan utama dari sistem metrik adalah set standar dari beberapa satuan pokok yang berhubungan dan set standar awalan pangkat sepuluh. Satuan-satuan pokok ini digunakan untuk menurunkan satuan yang lebih besar atau kecil yang dapat menggantikan angka yang luar biasa besar dari satuan yang sudah ada. Meskipun awalnya sistem ini digunakan untuk keperluan komersial, pengembangan satuan pengukuran koheren menjadikannya bisa digunakan untuk ilmu sains dan rekayasa.

Penggunaan sistem metrik yang tidak terkoordinasi oleh multidisiplin ilmu yang berbeda-beda, terutama di akhir abad ke-19, menghasilkan pemilihan satuan pokok yang berbeda-beda, meskipun semuanya mengambil basis dari definisi meter dan kilogram yang sama. Pada abad ke-20, muncul usaha-usaha untuk merasionalisasi satuan-satuan ini, maka pada tahun 1960 CPGM merilis Sistem Satuan Internasional, yang kemudian digunakan sebagai sistem metrik standar internasional yang dikenal.

Konversi antara satuan SI dan satuan lama

Selama evolusinya, sistem metrik telah mengadopsi banyak satuan pengukuran. Diperkenalkannya SI kemudian merasionalisasi cara satuan didefinisikan dan daftar satuan apa saja yang digunakan. Satuan-satuan ini sekarang terdapat pada brosur resmi SI.[1] Tabel di bawah ini menunjukkan daftar satuan pengukuran pada katalog dan menunjukkan faktor konversi yang menghubungkan satuan-satuan ini dengan satuan setara yang pernah digunakan sebelum diadopsinya SI.

Sumber: wikipedia.org

Selengkapnya
Sistem metrik
« First Previous page 640 of 773 Next Last »