Rahasia Keandalan IGBT: Strategi Micro-Sectioning & Four-Point Probing dalam Deteksi Dini Kerusakan Modul Daya

Dipublikasikan oleh Dewi Sulistiowati

11 April 2025, 08.12

Pixabay.com

Pendahuluan: Masalah yang Sering Terjadi Tapi Jarang Terlihat

Dalam industri energi, otomotif, dan elektronik berdaya tinggi, modul IGBT (Insulated Gate Bipolar Transistor) menjadi jantung dari sistem konversi daya. Namun, kegagalan mendadak pada modul masih menjadi masalah besar, meskipun telah melalui pengujian daya tahan. Penyebab utamanya? Interkoneksi lemah, terutama di area bonding wire dan solder yang sering kali terabaikan dalam pemantauan real-time.

Kristian Bonderup Pedersen, dalam disertasinya di Aalborg University, menjawab tantangan ini dengan kombinasi pendekatan Physics-of-Failure (PoF) dan teknik karakterisasi mikro untuk menganalisis degradasi antarmuka pada modul IGBT. Artikel ini akan membedah teknik dan temuan utama, serta menyambungkannya dengan tren industri terkini dalam pemeliharaan prediktif.

Fokus Studi: Modul Daya Berbasis IGBT dan Titik Lemahnya

Modul IGBT umumnya terdiri dari:

  • Lapisan baseplate (3000 µm)
  • Solder & DCB (Direct Copper Bonded substrate)
  • Chip diode & IGBT (300 µm)
  • Interkoneksi aluminium wire (400 µm)

Masalah utama muncul pada antarmuka antara Aluminium bond wire dan chip/metal base, yang rentan terhadap:

  • Fatigue mekanik akibat mismatch ekspansi termal
  • Lift-off dari wire bond
  • Cracking di area "heel" wire
  • Delaminasi solder dan degradasi grain

Teknik Diagnostik: Micro-Sectioning dan Four-Point Probing

1. Micro-Sectioning: Autopsi Komponen Elektronik

Metode ini digunakan untuk membuka dan melihat struktur granular pada antarmuka wire secara detail melalui:

  • Polishing mekanik dan kimia
  • Electro-etching dengan Barker’s reagent
  • Mikroskopi cahaya terpolarisasi dan SEM (Scanning Electron Microscopy)

Hasilnya memungkinkan:

  • Visualisasi grain refinement region
  • Penilaian kualitas bonding berdasarkan struktur mikroskopik
  • Estimasi umur pakai berdasarkan area rekristalisasi

2. Four-Point Probing: Deteksi Non-Destruktif

Teknik ini memungkinkan pengukuran resistansi lokal antar komponen (chip, solder, wire) tanpa merusak.
Manfaatnya:

  • Identifikasi degradasi dini pada interkoneksi
  • Evaluasi kerataan arus listrik antar wire
  • Mendeteksi potensi delaminasi sebelum kegagalan total

Studi Kasus A: Efek Kualitas Bonding terhadap Ketahanan

Variasi Sample dan Parameter

  • 2 tipe kabel Al (A dan B), kemurnian 99,99%
  • 3 level daya bonding (1.0x, 1.25x, 1.5x)
  • Total 6 kombinasi: A1–A3 dan B1–B3
  • Diuji dengan shear test, microscopy, dan FIB cross-section

Temuan Kunci:

  • Semakin tinggi power ultrasonik, semakin besar refinement zone → bonding lebih kuat
  • Wire A (grain besar): shear test tinggi, refinement abrupt
  • Wire B (grain kecil): shear test kuat tapi lebih sulit dibonding sempurna
  • 3D reconstruction memperlihatkan bahwa grain halus terbentuk membentuk setengah elipsoid di bawah permukaan bonding

Studi Kasus B: Deteksi Degradasi dengan Four-Point Probing

Modul yang Diuji:

  • Module A (baru)
  • Module B (tengah siklus)
  • Module C (hampir rusak)

Konfigurasi Pengujian:

  1. Sectional probing: mengukur resistansi dari terminal IGBT → Output
  2. Chip-level probing: mengukur resistansi solder dan metalisasi
  3. Wire interface probing: resistansi lokal pada interface wire-chip

Hasil:

  • Module C menunjukkan kenaikan resistansi signifikan di beberapa wire
  • Perbedaan resistansi paling besar terdeteksi di wire ujung (lebih panjang)
  • Crack dan delaminasi bisa diidentifikasi sebelum benar-benar rusak

Relevansi untuk Industri dan Tren Ke Depan

Keunggulan Kombinasi Micro-Sectioning & Probing:

  • Diagnostik berbasis ilmu fisika, bukan asumsi statistik
  • Akurat bahkan untuk modul tanpa data historis
  • Bisa digunakan untuk optimasi desain wire bonding dan solder

Potensi Aplikasi:

  • Industri otomotif & energi: prediksi kerusakan inverter dan konverter
  • Platform e-learning teknik: simulasi bonding & degradasi
  • Desain sistem prediktif AI dalam digital twin

Kritik dan Saran

Tantangan:

  • Micro-sectioning destruktif, cocok hanya untuk sampling terbatas
  • Four-point probing butuh presisi tinggi → alat ukur mahal
  • Belum semua proses inline manufacturing bisa mengakomodasi pendekatan ini

Saran Pengembangan:

  • Kembangkan metode semi-destruktif atau berbasis X-ray diffraction
  • Integrasi probing ke dalam mesin uji otomatis di lini produksi
  • AI-assisted pattern recognition dari citra grain refinement

Kesimpulan: Diagnostik Modern untuk Modul Masa Depan

Pedersen menawarkan pendekatan terobosan dan aplikatif untuk memahami degradasi modul IGBT hingga ke tingkat mikroskopik. Teknik ini mengubah cara kita melihat keandalan bukan hanya sebagai hasil statistik, tapi sebagai fenomena fisis yang bisa diukur, divisualisasi, dan dicegah.

Bagi pelaku industry, teknik ini membuka peluang:

  • Memperpanjang umur produk
  • Mengurangi klaim garansi
  • Mempercepat validasi desain

Dan bagi platform edukasi atau engineer masa depan, ini adalah bekal teknis yang mengakar pada realita lapangan dan prinsip ilmiah yang kuat.

Referensi : Pedersen, Kristian Bonderup. IGBT Module Reliability. Physics-of-Failure Based Characterization and Modelling. PhD Thesis, Aalborg University, 2014.