Manfaat dan Evolusi Interchangeable Parts dalam Manufaktur Modern

Dipublikasikan oleh Admin

11 April 2024, 20.47

Sumber: Wikipedia

Interchangeable parts adalah suku cadang (komponen) yang identik untuk tujuan praktis. Mereka dibuat dengan spesifikasi yang memastikan bahwa mereka hampir identik sehingga cocok untuk perakitan apa pun dengan jenis yang sama. Salah satu bagian tersebut dapat dengan bebas menggantikan bagian lainnya, tanpa penyesuaian khusus apa pun. Pertukaran ini memungkinkan perakitan perangkat baru dengan mudah, dan perbaikan perangkat yang sudah ada dengan lebih mudah, sekaligus meminimalkan waktu dan keterampilan yang dibutuhkan orang yang melakukan perakitan atau perbaikan.

Konsep pertukaran (interchangeability) sangat penting dalam pengenalan jalur perakitan pada awal abad ke-20, dan telah menjadi elemen penting dalam beberapa manufaktur modern namun tidak ada dalam industri penting lainnya.

Pertukaran suku cadang dicapai dengan menggabungkan sejumlah inovasi dan perbaikan dalam operasi pemesinan dan penemuan beberapa peralatan mesin, seperti mesin bubut sandaran geser, mesin bubut pemotong ulir, mesin bubut turret, mesin penggilingan, dan ketam logam. Inovasi tambahan mencakup jig untuk memandu peralatan mesin, perlengkapan untuk menahan benda kerja pada posisi yang tepat, serta balok dan pengukur untuk memeriksa keakuratan bagian yang sudah jadi.

Elektrifikasi memungkinkan peralatan mesin individual ditenagai oleh listrik motor, menghilangkan penggerak poros saluran dari mesin uap atau tenaga air dan memungkinkan kecepatan yang lebih tinggi, memungkinkan manufaktur skala besar yang modern.[2] Peralatan mesin modern sering kali memiliki kontrol numerik (NC) yang berkembang menjadi CNC (kontrol numerik terkomputerisasi) ketika mikroprosesor tersedia.

Metode produksi industri suku cadang yang dapat dipertukarkan di Amerika Serikat pertama kali dikembangkan pada abad kesembilan belas. Istilah sistem manufaktur Amerika kadang-kadang diterapkan pada mereka pada saat itu, berbeda dengan metode sebelumnya. Dalam beberapa dekade, metode seperti ini telah digunakan di berbagai negara, sehingga sistem Amerika kini menjadi acuan sejarah dan bukan nomenklatur industri saat ini.

Penggunaan pertama
Bukti penggunaan interchangeable parts dapat ditelusuri kembali selama dua ribu tahun ke Kartago pada Perang Punisia Pertama. Kapal-kapal Kartago memiliki suku cadang standar dan dapat dipertukarkan yang bahkan dilengkapi dengan instruksi perakitan yang mirip dengan tanda "tab A ke dalam slot B".

Asal usul konsep modern

Pada akhir abad ke-18, Jenderal Prancis Jean-Baptiste Vaquette de Gribeauval mempromosikan senjata standar yang kemudian dikenal sebagai Système Gribeauval setelah dikeluarkan sebagai perintah kerajaan pada tahun 1765. (Pada saat itu, sistem tersebut lebih berfokus pada artileri daripada senapan. atau pistol.) Salah satu pencapaian sistem ini adalah meriam padat dibuat dengan toleransi yang tepat, sehingga dindingnya menjadi lebih tipis daripada meriam yang diisi inti berongga. Namun, karena inti sering kali tidak berada di tengah, ketebalan dinding menentukan ukuran lubang. Pengeboran standar dibuat untuk meriam yang lebih pendek tanpa mengorbankan akurasi dan jangkauan karena cangkangnya lebih rapat; itu juga memungkinkan standarisasi shell.[1][halaman diperlukan]

Sebelum abad ke-18, perangkat seperti senjata api dibuat satu per satu oleh pembuat senjata dengan cara yang unik. Jika satu komponen senjata api perlu diganti, seluruh senjata api harus dikirim ke ahli senjata untuk diperbaiki, atau dibuang dan diganti dengan senjata api lain. Selama abad ke-18 dan awal abad ke-19, gagasan untuk mengganti metode ini dengan sistem manufaktur yang dapat dipertukarkan secara bertahap berkembang.[4][5] Perkembangannya memakan waktu puluhan tahun dan melibatkan banyak orang.

Gribeauval memberikan perlindungan kepada Honoré Blanc, yang berusaha menerapkan Système Gribeauval di level senapan. Sekitar tahun 1778, Honoré Blanc mulai memproduksi beberapa senjata api pertama dengan mekanisme flintlock yang dapat diganti, meskipun dibuat dengan hati-hati oleh pengrajin. Blanc mendemonstrasikan di depan komite ilmuwan bahwa senapannya dapat dilengkapi dengan mekanisme flintlock yang diambil secara acak dari tumpukan komponen.

Pada tahun 1785 senapan dengan kunci yang dapat diganti menarik perhatian Duta Besar Amerika Serikat untuk Prancis, Thomas Jefferson, melalui upaya Honoré Blanc. Jefferson gagal membujuk Blanc untuk pindah ke Amerika, kemudian menulis surat kepada Menteri Perang Amerika dengan gagasan tersebut, dan ketika dia kembali ke Amerika, dia bekerja untuk mendanai pengembangannya. Presiden George Washington menyetujui konsep tersebut, dan pada tahun 1798 Eli Whitney menandatangani kontrak untuk memproduksi 12.000 senapan secara massal yang dibuat berdasarkan sistem baru.

Louis de Tousard, yang melarikan diri dari Revolusi Perancis, bergabung dengan Korps Artileri AS pada tahun 1795 dan menulis manual artileri berpengaruh yang menekankan pentingnya standardisasi.

Kekurangan dan keterbatasan

Meskipun banyak keuntungan menggunakan suku cadang yang dapat dipertukarkan dalam produksi, ada beberapa kelemahan dan keterbatasan yang harus dipertimbangkan:

Masalah pengendalian kualitas: Produksi massal komponen terstandar terkadang dapat menyebabkan penurunan kualitas. Karena produsen bertujuan untuk meminimalkan biaya dan memaksimalkan efisiensi, kualitas masing-masing komponen mungkin menurun, sehingga menyebabkan risiko cacat atau kegagalan yang lebih tinggi pada produk akhir.

Hilangnya penyesuaian: Meskipun suku cadang yang dapat dipertukarkan menyederhanakan proses produksi dan perbaikan, suku cadang tersebut juga dapat membatasi kemampuan untuk menyesuaikan produk untuk memenuhi preferensi individu atau persyaratan tertentu. Hal ini dapat mengakibatkan berkurangnya daya tarik bagi pelanggan tertentu yang menghargai desain unik dan solusi khusus.

Ketergantungan pada komponen yang terstandarisasi: Suku cadang yang dapat dipertukarkan pada dasarnya bergantung pada penggunaan komponen yang terstandarisasi, sehingga dapat menimbulkan ketergantungan pada pemasok atau produsen tertentu. Hal ini dapat menyebabkan potensi masalah rantai pasokan, seperti terbatasnya ketersediaan atau peningkatan biaya karena fluktuasi permintaan.

Berkurangnya kemampuan beradaptasi: Perusahaan yang sangat bergantung pada suku cadang yang dapat dipertukarkan mungkin kurang mampu beradaptasi terhadap perubahan teknologi atau permintaan pasar. Hal ini dapat mengakibatkan kurangnya inovasi atau ketidakmampuan untuk merespons kebutuhan konsumen yang terus berkembang dengan cepat.

Masalah kekayaan intelektual: Seiring dengan semakin maraknya komponen yang dapat dipertukarkan di berbagai industri, risiko pencurian kekayaan intelektual atau pelanggaran paten mungkin meningkat. Hal ini dapat menimbulkan tantangan hukum dan mempengaruhi daya saing produsen yang mengandalkan desain atau teknologi eksklusif.

Secara keseluruhan, meskipun suku cadang yang dapat dipertukarkan telah memainkan peran penting dalam evolusi manufaktur modern, penting untuk mempertimbangkan dengan cermat potensi kelemahan dan keterbatasannya sebelum sepenuhnya berkomitmen pada pendekatan ini di industri atau lini produk mana pun.

Penerapan

Banyak penemu mulai mencoba menerapkan prinsip yang dijelaskan Blanc. Pengembangan peralatan mesin dan praktik manufaktur yang diperlukan akan menjadi pengeluaran yang besar bagi Departemen Persenjataan A.S., dan selama beberapa tahun ketika mencoba mencapai pertukaran, senjata api yang diproduksi membutuhkan biaya produksi yang lebih mahal. Pada tahun 1853, terdapat bukti bahwa suku cadang yang dapat dipertukarkan, yang kemudian disempurnakan oleh Gudang Senjata Federal, menghasilkan penghematan. Departemen Persenjataan secara bebas berbagi teknik yang digunakan dengan pemasok luar.[1][halaman diperlukan]

Eli Whitney dan upaya awal

Di AS, Eli Whitney melihat potensi manfaat dari pengembangan "suku cadang yang dapat dipertukarkan" untuk senjata api militer Amerika Serikat. Pada bulan Juli 1801 ia membuat sepuluh senjata, semuanya berisi bagian dan mekanisme yang sama persis, kemudian membongkarnya di hadapan Kongres Amerika Serikat. Dia menempatkan bagian-bagian itu dalam tumpukan campuran dan, dengan bantuan, memasang kembali semua senjata api di depan Kongres, seperti yang dilakukan Blanc beberapa tahun sebelumnya.

Kongres terpikat dan memerintahkan standar untuk semua peralatan Amerika Serikat. Penggunaan suku cadang yang dapat dipertukarkan menghilangkan permasalahan di masa lalu mengenai kesulitan atau ketidakmungkinan memproduksi suku cadang baru untuk peralatan lama. Jika satu bagian senjata api rusak, bagian lain dapat dipesan, dan senjata api tersebut tidak perlu dibuang. Masalahnya adalah senjata Whitney mahal dan dibuat dengan tangan oleh pekerja terampil.

Charles Fitch memuji Whitney karena berhasil melaksanakan kontrak senjata api dengan suku cadang yang dapat dipertukarkan menggunakan Sistem Amerika, namun sejarawan Merritt Roe Smith dan Robert B. Gordon sejak itu menetapkan bahwa Whitney tidak pernah benar-benar mencapai pembuatan suku cadang yang dapat dipertukarkan. Namun, perusahaan senjata keluarganya melakukan hal yang sama setelah kematiannya.

Blok layar Brunel

Blok katrol untuk tali-temali pada kapal layar
Produksi massal menggunakan suku cadang yang dapat dipertukarkan pertama kali dilakukan pada tahun 1803 oleh Marc Isambard Brunel bekerja sama dengan Henry Maudslay dan Simon Goodrich, di bawah manajemen (dan dengan kontribusi oleh) Brigadir Jenderal Sir Samuel Bentham,[9] Inspektur Jenderal Pekerjaan Angkatan Laut di Portsmouth Block Mills, Portsmouth Dockyard, Hampshire, Inggris. Pada saat itu, Perang Napoleon sedang mencapai puncaknya, dan Angkatan Laut Kerajaan sedang dalam tahap ekspansi yang membutuhkan 100.000 blok katrol untuk diproduksi setiap tahunnya. Bentham telah mencapai efisiensi luar biasa di dermaga dengan memperkenalkan mesin bertenaga listrik dan mengatur ulang sistem galangan kapal.


Mesin bubut pemotong sekrup Henry Maudslay (c. 1800) memungkinkan produksi sekrup industri skala besar yang dapat dipertukarkan.
Marc Brunel, seorang insinyur perintis, dan Maudslay, bapak pendiri teknologi peralatan mesin yang telah mengembangkan mesin bubut pemotong sekrup pertama yang praktis secara industri pada tahun 1800 yang menstandarkan ukuran ulir sekrup untuk pertama kalinya,[10] berkolaborasi dalam rencana pembuatan blok- membuat mesin; proposal tersebut diserahkan kepada Angkatan Laut yang setuju untuk menugaskan jasanya. Pada tahun 1805, galangan kapal telah diperbarui sepenuhnya dengan mesin revolusioner yang dibuat khusus pada saat produk masih dibuat secara individual dengan komponen yang berbeda. Sebanyak 45 mesin dibutuhkan untuk melakukan 22 proses pada blok tersebut, yang dapat dibuat dalam tiga ukuran berbeda. Mesin-mesin tersebut hampir seluruhnya terbuat dari logam, sehingga meningkatkan akurasi dan daya tahannya. Mesin akan membuat tanda dan lekukan pada balok untuk memastikan keselarasan selama proses berlangsung. Salah satu keuntungan dari metode baru ini adalah peningkatan produktivitas tenaga kerja karena persyaratan pengelolaan mesin yang tidak terlalu padat karya. Richard Beamish, asisten putra dan insinyur Brunel, Isambard Kingdom Brunel, menulis:

             Dengan demikian sepuluh orang, dengan bantuan mesin ini, dapat menyelesaikan dengan keseragaman, kecepatan dan kemudahan, apa yang sebelumnya membutuhkan kerja keras seratus sepuluh orang.

Pada tahun 1808, produksi tahunan telah mencapai 130.000 blok dan beberapa peralatan masih beroperasi hingga pertengahan abad kedua puluh.

Jam Terry: sukses di bidang kayu

Perlengkapan kayu dari salah satu jam kotak Terry yang tinggi, menunjukkan penggunaan gigi giling.
Eli Terry menggunakan suku cadang yang dapat dipertukarkan menggunakan mesin penggilingan sejak tahun 1800. Ward Francillon, seorang ahli horologi, menyimpulkan dalam sebuah penelitian bahwa Terry telah menyelesaikan suku cadang yang dapat dipertukarkan sejak tahun 1800. Studi tersebut meneliti beberapa jam Terry yang diproduksi antara tahun 1800–1807. Bagian-bagiannya diberi label dan diganti sesuai kebutuhan. Studi tersebut menyimpulkan bahwa semua bagian jam dapat dipertukarkan. Produksi massal pertama yang menggunakan suku cadang yang dapat dipertukarkan di Amerika adalah Kontrak Porter tahun 1806 karya Eli Terry, yang mengharuskan produksi 4000 jam dalam tiga tahun. Selama kontrak ini, Terry membuat mesin jam setinggi empat ribu perlengkapan kayu, pada saat rata-rata tahunannya sekitar selusin. Berbeda dengan Eli Whitney, Terry memproduksi produknya tanpa dana pemerintah. Terry melihat potensi jam menjadi barang rumah tangga. Dengan menggunakan mesin penggilingan, Terry mampu memproduksi secara massal beberapa lusin roda jam dan pelat pada saat yang bersamaan. Jig dan templat digunakan untuk membuat pinion yang seragam, sehingga semua bagian dapat dirakit menggunakan jalur perakitan.[18]

North and Hall: sukses di bidang metal
Langkah penting menuju pertukaran komponen logam diambil oleh Simeon North, yang bekerja hanya beberapa mil dari Eli Terry. North menciptakan salah satu mesin penggilingan pertama di dunia yang melakukan pembentukan logam yang dilakukan dengan tangan menggunakan kikir. Diana Muir percaya bahwa mesin penggilingan North sudah online sekitar tahun 1816.[19] Muir, Merritt Roe Smith, dan Robert B. Gordon semuanya setuju bahwa sebelum tahun 1832 baik Simeon North dan John Hall mampu memproduksi secara massal mesin-mesin kompleks dengan bagian-bagian yang bergerak (senjata) menggunakan sistem yang memerlukan penggunaan bagian-bagian yang ditempa secara kasar, dengan mesin penggilingan yang menggiling bagian-bagian tersebut hingga ukurannya hampir benar, dan kemudian "diarsipkan ke pengukur dengan tangan dengan bantuan jig pengarsipan".[20]

Para sejarawan berbeda pendapat mengenai pertanyaan apakah Hall atau North yang melakukan perbaikan penting. Merrit Roe Smith yakin hal itu dilakukan oleh Hall. Muir menunjukkan ikatan pribadi yang erat dan aliansi profesional antara Simeon North dan mekanik tetangga yang memproduksi jam kayu secara massal untuk menyatakan bahwa proses pembuatan senjata dengan bagian yang dapat dipertukarkan kemungkinan besar dirancang oleh North untuk meniru metode sukses yang digunakan dalam produksi jam secara massal. [19] Pertanyaan ini mungkin tidak dapat diselesaikan dengan pasti kecuali dokumen-dokumen yang sekarang tidak diketahui akan muncul di masa depan.

Akhir abad ke-19 dan awal abad ke-20: penyebaran ke seluruh bidang manufaktur
Insinyur dan masinis yang terampil, sebagian besar memiliki pengalaman persenjataan, menyebarkan teknik manufaktur yang dapat dipertukarkan ke industri Amerika lainnya, termasuk pembuat jam dan produsen mesin jahit Wilcox dan Gibbs serta Wheeler dan Wilson, yang menggunakan suku cadang yang dapat dipertukarkan sebelum tahun 1860.[1][halaman diperlukan][23] Yang terlambat mengadopsi sistem yang dapat dipertukarkan adalah mesin jahit Singer Corporation (1870-an), produsen mesin penuai McCormick Harvesting Machine Company (1870-an–1880-an)[1][halaman diperlukan] dan beberapa produsen mesin uap besar seperti Corliss (pertengahan 1880-an)[24] serta pembuat lokomotif. Mesin ketik menyusul beberapa tahun kemudian. Kemudian produksi sepeda secara besar-besaran pada tahun 1880-an mulai menggunakan sistem yang dapat dipertukarkan.

Selama dekade-dekade ini, pertukaran yang sebenarnya tumbuh dari pencapaian yang langka dan sulit menjadi kemampuan sehari-hari di seluruh industri manufaktur. Pada tahun 1950-an dan 1960-an, para sejarawan teknologi memperluas pemahaman dunia tentang sejarah perkembangan teknologi. Hanya sedikit orang di luar disiplin akademis yang mengetahui banyak tentang topik ini hingga tahun 1980-an dan 1990-an, ketika pengetahuan akademis mulai menjangkau khalayak yang lebih luas. Baru-baru ini pada tahun 1960-an, ketika Alfred P. Sloan menerbitkan memoar dan risalah manajemennya yang terkenal, My Years with General Motors, bahkan presiden dan ketua perusahaan manufaktur terbesar yang pernah ada pun hanya tahu sedikit tentang sejarah General Motors. pembangunan, selain mengatakan bahwa:

[Henry M. Leland], saya yakin, adalah salah satu orang yang bertanggung jawab membawa teknik suku cadang yang dapat dipertukarkan ke dalam manufaktur mobil. […] Telah menarik perhatian saya bahwa Eli Whitney, jauh sebelumnya, telah memulai pengembangan suku cadang yang dapat dipertukarkan sehubungan dengan pembuatan senjata, sebuah fakta yang menunjukkan adanya garis keturunan dari Whitney ke Leland hingga industri otomotif.[ 25]

Salah satu buku paling terkenal mengenai subjek ini, yang pertama kali diterbitkan pada tahun 1984 dan mendapat pembaca di luar dunia akademis, adalah buku David A. Hounshell, From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States.

Konteks sosial ekonomi

Prinsip suku cadang yang dapat dipertukarkan tumbuh subur dan berkembang sepanjang abad ke-19, dan menyebabkan produksi massal di banyak industri. Hal ini didasarkan pada penggunaan templat serta jig dan perlengkapan lainnya, yang diterapkan oleh tenaga kerja semi-terampil menggunakan peralatan mesin untuk menambah (dan kemudian menggantikan sebagian besar) perkakas tangan tradisional. Sepanjang abad ini, terdapat banyak upaya pengembangan yang harus dilakukan dalam menciptakan alat pengukur, alat ukur (seperti kaliper dan mikrometer), standar (seperti ulir sekrup), dan proses (seperti manajemen ilmiah), namun prinsip pertukaran tetap ada. konstan. Dengan diperkenalkannya jalur perakitan pada awal abad ke-20, suku cadang yang dapat dipertukarkan menjadi elemen manufaktur yang ada di mana-mana.

Perakitan selektif

Dapat dipertukarkan bergantung pada dimensi bagian yang berada dalam kisaran toleransi. Cara perakitan yang paling umum adalah merancang dan memproduksi sedemikian rupa sehingga, selama setiap bagian yang mencapai perakitan berada dalam toleransi, perkawinan bagian-bagian tersebut dapat dilakukan secara acak. Hal ini mempunyai nilai untuk semua alasan yang telah dibahas sebelumnya.

Ada mode perakitan lain, yang disebut "perakitan selektif", yang memberikan sebagian kemampuan keacakan sebagai ganti nilai lainnya. Ada dua bidang penerapan utama yang mendapatkan manfaat ekonomi dari perakitan selektif: ketika rentang toleransi sangat ketat sehingga tidak dapat dipertahankan dengan baik (membuat keacakan total tidak tersedia); dan ketika rentang toleransi dapat dipertahankan dengan andal, namun kesesuaian dan penyelesaian perakitan akhir dimaksimalkan dengan secara sukarela melepaskan beberapa keacakan (yang membuatnya tersedia tetapi tidak diinginkan secara ideal). Dalam kedua kasus tersebut, prinsip perakitan selektif adalah sama: bagian-bagiannya dipilih untuk dikawinkan, bukan dikawinkan secara acak. Saat bagian-bagian tersebut diinspeksi, bagian-bagian tersebut dikelompokkan ke dalam wadah terpisah berdasarkan pada rentang mana bagian tersebut termasuk (atau dilanggar). Berada dalam rentang tertinggi atau terendah biasanya disebut sebagai rentang yang berat atau ringan; melanggar batas atas atau bawah suatu rentang biasanya disebut sebagai ukuran terlalu besar atau terlalu kecil. Contohnya diberikan di bawah ini.

French dan Vierck memberikan deskripsi satu paragraf tentang perakitan selektif yang merangkum konsep tersebut dengan tepat.

Mungkin ada yang bertanya, jika bagian-bagian harus dipilih untuk dikawinkan, lalu apa yang membuat perakitan selektif berbeda dari metode kerajinan tertua? Namun nyatanya terdapat perbedaan yang signifikan. Perakitan selektif hanya mengelompokkan bagian-bagian ke dalam beberapa rentang; dalam setiap rentang, masih ada pertukaran acak. Hal ini sangat berbeda dengan metode pemasangan lama yang dilakukan oleh seorang perajin, yaitu setiap kumpulan komponen dikikir secara khusus agar sesuai dengan masing-masing komponen dengan bagian yang spesifik dan unik.

Perakitan acak tidak tersedia: komponen berukuran besar dan kecil

Dalam konteks di mana aplikasi memerlukan rentang toleransi yang sangat ketat (sempit), persyaratan tersebut mungkin sedikit melampaui batas kemampuan pemesinan dan proses lainnya (stamping, rolling, bending, dll.) untuk tetap berada dalam rentang tersebut. Dalam kasus seperti itu, perakitan selektif digunakan untuk mengkompensasi kurangnya pertukaran total antar bagian. Jadi, untuk pin yang harus memiliki lubang geser (bebas tetapi tidak ceroboh), dimensinya dapat ditentukan sebagai 12,00 +0 −0,01 mm untuk pin, dan 12,00 +0,01 −0 untuk lubang. Pin yang berukuran terlalu besar (katakanlah pin dengan diameter 12,003 mm) belum tentu bekas, namun hanya dapat dikawinkan dengan pin yang juga berukuran besar (misalnya, lubang dengan ukuran 12,013 mm). Hal yang sama juga berlaku untuk mencocokkan suku cadang berukuran kecil dengan suku cadang berukuran kecil. Yang melekat pada contoh ini adalah untuk aplikasi produk ini, dimensi 12 mm tidak memerlukan ketelitian yang ekstrim, namun kesesuaian antar bagian yang diinginkan memang memerlukan ketelitian yang baik (lihat artikel tentang ketelitian dan presisi). Hal ini memungkinkan pembuat untuk "sedikit berbuat curang" pada total pertukaran untuk mendapatkan nilai lebih dari upaya manufaktur dengan mengurangi tingkat penolakan (scrap rate). Ini adalah keputusan rekayasa yang masuk akal selama aplikasi dan konteksnya mendukungnya. Misalnya, untuk mesin yang tidak direncanakan untuk melakukan layanan lapangan di masa depan yang bersifat penggantian suku cadang (melainkan hanya penggantian sederhana seluruh unit), hal ini masuk akal secara ekonomi. Hal ini menurunkan biaya per unit produk, dan tidak menghambat pekerjaan servis di masa depan.

Contoh produk yang mungkin mendapat manfaat dari pendekatan ini adalah transmisi mobil yang tidak ada harapan bahwa petugas servis lapangan akan memperbaiki transmisi lama; sebaliknya, dia hanya akan menukarnya dengan yang baru. Oleh karena itu, pertukaran total tidak mutlak diperlukan untuk rakitan di dalam transmisi. Bagaimanapun, hal itu akan ditentukan, hanya berdasarkan prinsip umum, kecuali untuk poros tertentu yang memerlukan ketelitian yang sangat tinggi sehingga menyebabkan gangguan besar dan tingkat skrap yang tinggi di area penggilingan, tetapi untuk itu hanya diperlukan ketelitian yang layak, asalkan sesuai. dengan lubangnya bagus dalam segala hal. Uang dapat dihemat dengan menyimpan banyak poros dari tempat sampah.

Realitas ekonomi dan komersial

Contoh seperti di atas tidak umum terjadi dalam perdagangan nyata, sebagian besar karena adanya pemisahan kepentingan, dimana setiap bagian dari sistem yang kompleks diharapkan memberikan kinerja yang tidak membuat asumsi yang membatasi tentang bagian lain dari sistem. . Dalam contoh transmisi mobil, pemisahan kekhawatirannya adalah bahwa masing-masing perusahaan dan pelanggan tidak menerima kurangnya kebebasan atau pilihan dari pihak lain dalam rantai pasokan. Misalnya, dalam pandangan pembeli mobil, produsen mobil "tidak berhak" berasumsi bahwa tidak ada mekanik servis lapangan yang akan memperbaiki transmisi lama selain menggantinya. Pelanggan berharap bahwa keputusan tersebut akan disimpan untuk diambil nanti, di bengkel, berdasarkan opsi mana yang lebih murah baginya pada saat itu (mengingat bahwa mengganti satu poros lebih murah daripada mengganti seluruh transmisi). Logika ini tidak selalu valid dalam kenyataan; mungkin lebih baik bagi total biaya kepemilikan pelanggan untuk membayar harga awal yang lebih rendah untuk mobil tersebut (terutama jika layanan transmisi tercakup dalam garansi standar selama 10 tahun, dan pembeli tetap bermaksud mengganti mobil sebelum tanggal tersebut) daripada membayar harga awal yang lebih tinggi untuk mobil tersebut tetapi tetap mempertahankan opsi pertukaran total setiap mur, baut, dan poros terakhir di seluruh mobil (bila tidak akan dimanfaatkan). Namun perdagangan pada umumnya bersifat multivariat yang terlalu kacau sehingga logika ini tidak berlaku, sehingga pertukaran total akhirnya dapat ditentukan dan dicapai bahkan ketika hal itu menambah biaya yang "tidak perlu" dari pandangan holistik sistem komersial. Namun hal ini dapat dihindari jika pelanggan merasakan nilai keseluruhan (yang dapat dideteksi dan diapresiasi oleh pikiran mereka) tanpa harus memahami analisis logisnya. Oleh karena itu, pembeli mobil yang sangat terjangkau (harga awalnya sangat rendah) mungkin tidak akan pernah mengeluh bahwa transmisinya tidak dapat diservis di lapangan selama mereka sendiri tidak perlu membayar untuk servis transmisi selama masa kepemilikannya. Analisa ini penting untuk dipahami oleh produsen (walaupun hal ini tidak dipedulikan pelanggan), karena ia dapat menciptakan keunggulan kompetitif di pasar jika ia dapat secara akurat memprediksi di mana harus “mengambil jalan pintas” dengan cara yang diinginkan pelanggan. tidak perlu membayar. Dengan demikian, ia dapat mengurangi biaya unit transmisi. Namun, ketika melakukan hal tersebut, ia harus yakin bahwa transmisi yang digunakannya dapat diandalkan, karena penggantiannya, yang dilindungi garansi panjang, akan menjadi tanggungan dirinya.

Perakitan acak tersedia tetapi tidak diinginkan secara ideal: komponen "ringan" dan "berat".
Area penerapan utama lainnya untuk perakitan selektif adalah dalam konteks di mana pertukaran total sebenarnya dapat dicapai, namun "kesesuaian dan hasil akhir" dari produk akhir dapat ditingkatkan dengan meminimalkan ketidaksesuaian dimensi antara bagian-bagian yang digabungkan. Pertimbangkan aplikasi lain yang serupa dengan yang di atas dengan pin 12 mm. Namun katakanlah dalam contoh ini, bukan hanya presisi yang penting (untuk menghasilkan kesesuaian yang diinginkan), namun akurasi juga penting (karena pin 12 mm harus berinteraksi dengan sesuatu yang lain sehingga harus berukuran akurat pada 12 mm). Beberapa implikasi dari contoh ini adalah tingkat penolakan tidak dapat diturunkan; semua bagian harus berada dalam kisaran toleransi atau dibuang. Jadi, tidak ada penghematan yang bisa didapat dengan menyelamatkan suku cadang yang terlalu besar atau terlalu kecil dari barang bekas. Namun, masih ada sedikit manfaat yang bisa didapat dari perakitan selektif: membuat semua pasangan yang dikawinkan memiliki kecocokan geser yang sedekat mungkin (dibandingkan dengan beberapa kecocokan yang lebih ketat dan beberapa kecocokan yang lebih longgar—semuanya meluncur, tetapi dengan ketahanan yang berbeda-beda) .

Contoh produk yang mungkin mendapat manfaat dari pendekatan ini adalah peralatan mesin kelas ruang perkakas, yang tidak hanya mengutamakan akurasi, namun juga kesesuaian dan penyelesaiannya.

 

Disadur dari: en.wikipedia.org