Lingkungan & Kebijakan Publik

Krisis Senyap Limbah Domestik Indonesia: Penelitian Ini Mengungkap Rahasia di Balik 70% Pencemaran Sungai—dan Solusi yang Terabaikan

Dipublikasikan oleh Hansel pada 16 Desember 2025


I. Membongkar Mitos Sanitasi dan Ancaman Pencemaran Rumah Tangga

Indonesia seringkali mencatat kemajuan signifikan dalam meningkatkan akses sanitasi dasar bagi penduduknya. Pada tahun 2010, misalnya, akses terhadap sanitasi yang layak di kawasan perkotaan telah mencapai angka sekitar 73 persen.1 Namun, penelitian ini mengungkap sebuah ironi yang membayangi statistik tersebut: akses dasar yang tercatat tidak serta-merta menjamin ketersediaan sistem pengumpulan dan pembuangan air limbah yang aman bagi lingkungan. Angka 73 persen tersebut hanyalah cangkang.

Realitasnya, di tengah kepadatan urban yang terus meningkat, hanya sekitar satu persen air limbah domestik dan empat persen lumpur tinja yang berhasil dikumpulkan dan diolah dengan aman.1 Kesenjangan yang hampir 72 persen antara akses dasar dan pengolahan aman ini menggambarkan betapa gentingnya situasi. Apabila diterjemahkan dalam konteks sehari-hari, kesenjangan ini menunjukkan bahwa dari setiap seratus liter air limbah yang dihasilkan oleh aktivitas rumah tangga dan komersial, 99 liter dibuang ke badan air atau merembes ke air tanah tanpa melalui proses filterisasi dan pengolahan yang memadai.1

Urgensi untuk mengatasi masalah limbah domestik ini tidak hanya terbatas pada isu kesehatan lingkungan, tetapi juga membebani perekonomian negara secara masif. Data menunjukkan bahwa kegagalan dalam mengelola kebersihan dan sanitasi yang buruk telah mengakibatkan kerugian ekonomi yang substansial. Pada tahun 2007, Indonesia diperkirakan kehilangan Rp 56 triliun (setara USD 6.3 miliar saat itu), yang merupakan kerugian setara dengan sekitar 2.3 persen dari Produk Domestik Bruto (PDB) Indonesia.1

Siapa Sebenarnya Polutan Terbesar di Kota Kita? Cerita di Balik Data

Fokus kebijakan dan perhatian publik di Indonesia selama ini cenderung kuat terhadap regulasi dan pengawasan limbah industri. Namun, temuan penelitian ini mengungkapkan sebuah fakta yang mengejutkan, sekaligus mendesak penyesuaian arah kebijakan. Beban pencemaran organik terbesar yang mencemari air sungai dan badan air lainnya di kota-kota besar justru berasal dari aktivitas domestik.

Limbah rumah tangga, perkantoran, dan komersial adalah penyumbang polutan organik yang paling dominan. Sebagai ilustrasi, di kawasan DKI Jakarta, beban pencemar organik yang berasal dari air limbah domestik mencapai sekitar 70 persen dari total polusi yang menyumbang pencemaran air. Angka ini merupakan mayoritas mutlak dan jauh melampaui kontribusi dari sektor lain, di mana air limbah industri hanya menyumbang sekitar 15 persen.1

Situasi serupa terjadi di daerah aliran sungai krusial seperti Citarum. Data tahun 2010 menunjukkan bahwa air limbah yang berasal dari rumah tangga dan fasilitas publik lainnya adalah polutan terbesar, menyumbang 60 persen materi organik. Sementara itu, limbah industri menyumbang 30 persen dan sisanya 10 persen berasal dari sektor pertanian dan peternakan.1

Dominasi polusi domestik yang mencapai 70 persen ini menunjukkan adanya ketidakselarasan yang signifikan antara fokus kebijakan dan sumber masalah riil di lapangan. Polusi domestik bersifat difus, berasal dari jutaan sumber kecil (setiap rumah tangga dan bangunan). Meskipun polusi industri (15 persen) mudah dikontrol karena berasal dari titik tertentu, mengabaikan polusi difus yang dominan akan membuat upaya penanggulangan pencemaran sungai terus menemui kegagalan. Para peneliti menekankan, upaya yang lebih substansial dan terarah sangat dibutuhkan untuk mengevaluasi dan menyesuaikan konsep pengelolaan yang ada demi mencapai tujuan yang diinginkan.1

 

II. Mengapa Sistem On-Site Tradisional (Septic Tank) Memperburuk Krisis Air Tanah

Dalam kerangka regulasi di Indonesia, Sistem Pengelolaan Air Limbah Domestik (SPALD) diklasifikasikan menjadi dua jenis utama berdasarkan lokasi pengolahannya: sistem on-site (desentralisasi) dan sistem off-site (sentralisasi).1 Meskipun sistem on-site dianggap dapat memberikan layanan yang bersih dan nyaman jika dirancang sesuai standar, implementasi di lapangan menunjukkan tantangan fundamental yang masif.

Menghadapi Kegagalan Konstruksi Septic Tank

Sistem on-site skala individu, yang merupakan solusi paling umum di Indonesia, biasanya mengandalkan septic tank dan area resapan/sumur.1 Masalah utamanya terletak pada praktik pembangunan yang tidak sesuai standar. Banyak sekali septic tank yang dibangun tidak kedap air (non-waterproof) dan tidak memenuhi persyaratan teknis yang diamanatkan.

Kegagalan konstruksi ini mengakibatkan rembesan air limbah mentah (seepage) yang mengalir ke air tanah dangkal, terutama di wilayah permukiman padat.1 Dampak langsung dari rembesan ini sangat nyata: kualitas air sumur gali yang digunakan masyarakat setempat menurun drastis dan tidak lagi memenuhi standar kualitas air untuk konsumsi atau bahkan untuk kebutuhan sanitasi higiene, ditandai dengan pencemaran oleh Total Coliform, Nitrat, dan Klorida.1

Karena pertumbuhan populasi yang terus meningkat dan kemampuan alam untuk memurnikan air limbah secara alami semakin terbatas, pencemaran air tanah akibat limbah domestik harus mendapatkan perhatian yang jauh lebih besar.1

Dilema Pengelolaan Komunal: Solusi 'Stopgap' yang Tidak Memadai

Menanggapi sulitnya pembangunan septic tank individu di daerah padat, pemerintah telah mendorong pembangunan sistem on-site skala komunal atau sering disebut sebagai Instalasi Pengolahan Air Limbah (IPAL) Komunal.1 Sistem ini dimaksudkan untuk melayani dua hingga sepuluh unit rumah tangga atau fasilitas publik seperti Mandi, Cuci, Kakus (MCK).1

Secara konseptual, sistem komunal ini berfungsi sebagai penghubung antara sistem individu dan sistem skala kota. Sistem komunal dianggap cukup diterima oleh masyarakat, yang dibuktikan dengan banyaknya fasilitas Decentralized Wastewater Treatment System (DEWATS) yang telah dibangun di berbagai daerah.1

Namun, kritik realistis yang muncul dari penelitian ini adalah bahwa DEWATS seringkali hanya menjadi solusi stopgap yang tidak memadai, terutama di daerah perkotaan yang padat. Implementasinya seringkali berhasil di tahap perencanaan dan pembangunan, tetapi kegagalan operasional dan pemeliharaan (Operation and Maintenance/O&M) menjadi masalah kronis. Partisipasi masyarakat yang kuat (faktor penting untuk sistem komunal) menurun drastis setelah fasilitas mulai beroperasi.1

Fasilitas pengolahan komunal yang ada juga sering mengalami kesulitan dalam menghasilkan air buangan (effluent) yang benar-benar memenuhi standar baku mutu nasional.1 Apabila sistem komunal gagal menjaga kualitas air keluarannya dan tidak berkelanjutan secara finansial—mengingat pendapatan iuran pengguna hampir selalu tidak mencukupi untuk biaya O&M—maka investasi dalam DEWATS hanya berujung pada penundaan polusi, bukan penyelesaian masalah.1 Oleh karena itu, bagi wilayah perkotaan yang padat, penelitian ini mengindikasikan bahwa sistem komunal merupakan alternatif yang tidak memadai, dan perhatian harus diarahkan ke solusi skala yang lebih besar dan profesional.1

 

III. Paradox Sentralisasi: Infrastruktur Mahal yang Menganggur di Kota Metropolitan

Solusi jangka panjang yang dianggap mutlak diperlukan untuk kota-kota dengan kepadatan penduduk lebih dari 300 kapita per hektare adalah Sistem Pengelolaan Air Limbah Domestik (SPALD) off-site atau sentralisasi.1 Sistem ini melibatkan jaringan perpipaan yang mengalirkan air limbah secara terpusat dari setiap rumah ke Instalasi Pengolahan Air Limbah (WWTP) utama, yang dikelola secara profesional oleh pemerintah daerah atau badan resmi.1

Secara historis, pengembangan sistem sanitasi di Indonesia sudah didorong sejak program Kampong Improvement Program (KIP) pada tahun 1969.1 Meskipun upaya ini dilanjutkan melalui Integrated Urban Infrastructure Development Program (IUIDP) yang mulai membangun WWTP percontohan di beberapa kota seperti Jakarta, Bandung, dan Medan, kemajuan yang dicapai hingga saat ini masih sangat lambat dan terbatas.

Jurang Kapasitas: Ketika Jakarta Hanya Berfungsi 12 Persen

Hingga tahun 2012, setelah lebih dari tujuh dekade sejak pembangunan infrastruktur pertama di masa kolonial, Indonesia baru memiliki fasilitas sistem sentralisasi di 12 kota.1 Namun, masalah terbesar yang dihadapi bukanlah pada ketiadaan fasilitas, melainkan pada pemanfaatan atau utilitas WWTP yang sudah ada.

Penelitian ini mengungkapkan bahwa sebagian besar WWTP sentralisasi beroperasi jauh di bawah kapasitas totalnya, dengan tingkat pemanfaatan rata-rata kurang dari 70 persen.1 Data ini dapat dinarasikan dalam perumpamaan yang hidup.

Ambil contoh DKI Jakarta, ibu kota dan kota terbesar di Indonesia. Meskipun telah dilengkapi dengan WWTP modern (menggunakan teknologi Moving Bed Biofilm Reactor atau MBBR) dengan kapasitas terpasang $42.000 \text{ meter kubik per hari}$, tingkat pemanfaatan pada tahun 2019 hanya mencapai 12.37 persen.1 Kondisi ini ibarat sebuah kota yang membeli pembangkit listrik raksasa untuk melayani puluhan ribu orang, tetapi hanya menggunakannya untuk menyalakan lampu di segelintir rumah. Ini menunjukkan inefisiensi investasi modal yang sangat besar.

Situasi serupa terjadi di kota besar lainnya. WWTP Bandung, misalnya, memiliki kapasitas besar $243.000 \text{ meter kubik per hari}$, namun hanya beroperasi pada tingkat pemanfaatan 20 persen.1

Kegagalan 'Last Mile': Mengapa WWTP Menganggur

Utilitas WWTP yang rendah, terutama di kota metropolitan, tidak disebabkan oleh buruknya teknologi pengolahan yang digunakan, tetapi karena kegagalan pada tahap "mil terakhir" (last mile)—yaitu kegagalan dalam menghubungkan rumah tangga dan bangunan ke jaringan pipa sentralisasi.1

Pada tahun 2012, total koneksi rumah (House Connection atau HC) yang terpasang di seluruh 12 kota yang memiliki sistem sentralisasi masih kurang dari $200.000$ unit, dengan laju penambahan koneksi yang sangat lambat.1 Kegagalan membangun jaringan pipa sekunder dan tersier yang memadai, serta kelemahan dalam penegakan kewajiban koneksi, menyebabkan investasi WWTP berskala besar menjadi sia-sia.

Ini sangat kontras dengan kota-kota yang berhasil memaksimalkan sistem mereka. Balikpapan, misalnya, dengan sistem Extended Aeration mencapai utilitas 100 persen ($800 \text{ meter kubik per hari}$), dan Yogyakarta mencapai 92 persen.1 Keberhasilan di Balikpapan dan Yogyakarta menunjukkan bahwa model sentralisasi dapat berfungsi optimal jika manajemen koneksi dan operasionalnya terintegrasi dengan baik.

Tantangan Keberlanjutan Finansial

Di samping masalah koneksi, keberlanjutan finansial sistem sentralisasi juga menjadi tantangan besar. Kurang dari 50 persen WWTP dilaporkan berfungsi dengan baik, dan hanya sistem Bandung serta Jakarta yang dinilai mampu menghasilkan pendapatan operasional yang cukup untuk menutupi biaya Operasional dan Pemeliharaan (O&M).1 Kota-kota lain masih sangat bergantung pada subsidi pemerintah.1 Ketergantungan struktural pada subsidi ini mengancam keberlanjutan jangka panjang sistem yang vital ini, dan semakin memperkuat perlunya kebijakan yang memastikan utilitas WWTP dimaksimalkan melalui koneksi yang wajib.

 

IV. Membongkar Kerangka Regulasi: Standar Kualitas yang Mutlak dan Mandatori

Meskipun implementasi di lapangan masih jauh dari ideal, Indonesia memiliki kerangka regulasi yang kuat dan jelas mengenai kewajiban pengolahan air limbah domestik. Kerangka ini berfungsi untuk mencegah pencemaran badan air dan mengatur pelaksanaan kegiatan sanitasi.1

Landasan Hukum dan Kewajiban Kepatuhan

Kewajiban utama untuk mengolah limbah diatur dalam Undang-Undang No. 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup (PPLH). Pasal 20 Ayat 3 dari undang-undang ini menyatakan secara eksplisit bahwa setiap orang hanya diperbolehkan membuang limbah ke media lingkungan jika air limbah tersebut telah memenuhi standar kualitas lingkungan yang ditetapkan dan telah mendapatkan izin resmi.1

Pelaksanaan kewajiban ini dipertegas melalui Peraturan Menteri Lingkungan Hidup dan Kehutanan (Permen LHK) No. 68 Tahun 2016 mengenai baku mutu air limbah domestik.1 Regulasi ini bersifat nasional dan mengikat setiap kegiatan usaha dan/atau aktivitas yang menghasilkan air limbah domestik untuk melakukan pengolahan sebelum membuangnya ke lingkungan.1 Regulasi ini berlaku untuk berbagai sumber, mulai dari pemukiman, kantor, restoran, hingga WWTP skala regional.1

Selain itu, perlindungan terhadap air tanah dangkal (seperti sumur gali), yang sangat rentan terhadap rembesan septic tank, diatur oleh Peraturan Menteri Kesehatan No. 32 Tahun 2017. Regulasi ini menetapkan standar kualitas kesehatan lingkungan untuk keperluan higiene dan sanitasi.1

Mengukur Sukses: Kunci Baku Mutu BOD dan COD

Kepatuhan terhadap regulasi diukur melalui baku mutu yang menetapkan batas maksimum kandungan polutan yang diizinkan dibuang ke badan air penerima.

Dua parameter kritis yang menjadi tolok ukur utama adalah Biochemical Oxygen Demand (BOD) dan Chemical Oxygen Demand (COD). Standar nasional yang ditetapkan oleh Permen LHK No. 68 Tahun 2016 membatasi kandungan BOD dalam air limbah domestik tidak boleh melebihi 30 miligram per liter ($\text{mg/l}$), sementara COD dibatasi maksimum 100 $\text{mg/l}$.1 Padatan tersuspensi total (TSS) juga dibatasi hingga 30 $\text{mg/l}$.1

Target BOD 30 $\text{mg/l}$ ini sangat penting karena menunjukkan jumlah oksigen yang dibutuhkan mikroorganisme untuk mengurai materi organik dalam air. Apabila air limbah yang dibuang memiliki BOD tinggi (jauh di atas batas 30 $\text{mg/l}$), itu akan menyedot oksigen terlarut di sungai atau danau, mematikan biota air, dan secara langsung melanjutkan krisis pencemaran.1

Fakta bahwa sistem on-site yang tidak standar dan DEWATS komunal yang tidak berfungsi secara efektif masih mendominasi pengelolaan limbah di kawasan padat menunjukkan adanya disparitas yang mencolok. Jutaan sumber polusi secara teknis dan terang-terangan melanggar baku mutu ketat yang diamanatkan oleh negara.1 Hal ini menyoroti bahwa masalah terbesar saat ini bukanlah pada ketiadaan hukum, tetapi pada penegakan dan insentif investasi infrastruktur skala besar yang mendukung kepatuhan di tingkat akar rumput.

 

V. Menyelami Teknologi Pengolahan: Dari Kolam Alam hingga Reaktor Modern

Pilihan teknologi pengolahan air limbah domestik yang diterapkan di Indonesia sangat bervariasi, disesuaikan dengan karakteristik limbah dan kebutuhan lahan.1 Secara umum, pengolahan limbah domestik di Indonesia memprioritaskan pengurangan materi organik, padatan tersuspensi, dan patogen, utamanya melalui tahap primary treatment dan secondary treatment.1

Pengolahan tingkat lanjut (tertiary treatment) biasanya hanya dilakukan jika pengolahan dasar belum memenuhi standar atau jika air tersebut ditujukan untuk didaur ulang, meskipun masyarakat Indonesia pada umumnya masih enggan mengonsumsi air daur ulang.1

Proses pengolahan di WWTP sentralisasi mencakup pre-treatment (penyaringan kasar, penghilangan grit), primary treatment (sedimentasi untuk memisahkan padatan), secondary treatment (proses biologis untuk mengurangi BOD/COD), dan diakhiri dengan disinfeksi sebelum dibuang ke badan air penerima.1

Beberapa teknologi secondary treatment yang telah diadopsi di berbagai kota di Indonesia, yang menunjukkan keragaman pendekatan dalam negeri, meliputi:

1. Sistem Kolam dan Lagoon

Sistem ini, seperti Aerated Lagoon (digunakan di Prapat dan Bali) atau kolam stabilisasi (Stabilization Pond, digunakan di Bandung dan Cirebon), adalah proses biologis alami yang menggunakan kolam dangkal. Kolam stabilisasi merupakan rangkaian kolam anaerobik, fakultatif, dan maturasi, yang memanfaatkan kondisi alamiah untuk mendegradasi limbah.1 Meskipun teknologi ini relatif murah dan mudah dioperasikan, ia membutuhkan lahan yang sangat luas, menjadikannya kurang cocok untuk kota-kota metropolitan yang padat.1

2. Teknologi Biofilm Modern

Teknologi ini mengandalkan pertumbuhan mikroba yang melekat pada media tertentu. Contohnya adalah Moving Bed Biofilm Reactor (MBBR) yang diterapkan di Jakarta. MBBR adalah teknologi canggih yang menggabungkan pertumbuhan bakteri dalam media terendam (biofilm) dan bakteri yang tersuspensi, terbukti sangat efektif dalam menghilangkan polutan dan terutama optimal dalam mengurangi konsentrasi amonia.1 Teknologi ini menawarkan keunggulan karena membutuhkan lahan yang jauh lebih minimal dibandingkan sistem kolam.

Contoh teknologi biofilm lainnya adalah Rotating Biological Contactor (RBC), seperti yang digunakan di Banjarmasin. RBC menggunakan serangkaian cakram bundar yang berputar perlahan dalam aliran air limbah, memungkinkan biomassa tumbuh dan mengolah limbah saat cakram terpapar udara dan air secara bergantian.1

3. Reaktor Anaerobik dan Aerasi Lanjut

Upflow Anaerobic Sludge Blanket (UASB), yang digunakan di Medan, adalah reaktor anaerobik satu tangki di mana limbah masuk dari bawah dan bergerak ke atas melalui lapisan lumpur aktif. Reaktor ini efisien dalam kondisi suhu rendah maupun tinggi.1

Sementara itu, teknologi aerasi lanjut (Extended Aeration) dan Oxidation Ditch (digunakan di Balikpapan, Batam, dan Tangerang) merupakan pengembangan dari proses Activated Sludge konvensional.1 Extended Aeration (Balikpapan) membutuhkan waktu aerasi yang lebih panjang (sekitar 30 jam) dan menghasilkan lumpur berlebih yang lebih sedikit.1 Oxidation Ditch (Batam dan Tangerang) menggunakan tangki berbentuk oval dan berfungsi mengurangi BOD, COD, serta konsentrasi nutrien.1

Keragaman teknologi ini menggarisbawahi bahwa Indonesia telah mengadopsi berbagai solusi pengolahan yang modern dan teruji secara global. Ini memperkuat temuan bahwa kendala utama pengelolaan limbah domestik di Indonesia bukanlah pada pilihan teknologi yang buruk, melainkan pada kegagalan tata kelola, pembiayaan, dan yang paling krusial, masalah koneksi (low utilization) di sistem sentralisasi skala kota. Diskusi kebijakan seharusnya bergeser dari mencari "teknologi mana yang terbaik" menjadi fokus pada "bagaimana cara memastikan setiap unit di area layanan wajib terkoneksi dan O&M dapat dibiayai secara mandiri."

 

VI. Kesimpulan dan Jalan ke Depan: Prioritas Pembangunan Skala Kota

Air limbah domestik, yang menyumbang mayoritas polusi organik di perkotaan, telah lama menjadi sektor yang dipinggirkan. Penelitian ini menegaskan bahwa meskipun akses sanitasi dasar diklaim tinggi, tingkat pengolahan limbah yang aman hanya mencapai satu persen.1 Kita terjebak dalam dilema struktural: sistem on-site yang mencemari air tanah karena non-standar, dan sistem off-site (WWTP sentralisasi) yang merupakan solusi paling efektif, tetapi beroperasi pada tingkat utilitas yang memprihatinkan (seperti Jakarta yang hanya 12.37%).1

Sistem komunal (DEWATS), meskipun didorong sebagai alternatif, terbukti tidak memadai untuk mengatasi krisis sanitasi di wilayah padat karena masalah O&M dan ketidakmampuan untuk konsisten mencapai baku mutu air buangan.1

Pernyataan Dampak Nyata dan Solusi Prioritas

Berdasarkan kondisi lapangan dan evaluasi konseptual, penelitian ini secara tegas menyimpulkan bahwa solusi terhadap krisis sanitasi perkotaan adalah dengan memprioritaskan pengembangan masif sistem sentralisasi skala kota (urban scale off-site system). Upaya yang lebih signifikan harus difokuskan pada pemecahan masalah koneksi rumah (house connection) untuk memaksimalkan utilitas WWTP yang sudah ada.1

Jika pemerintah daerah dapat belajar dari model operasional yang sukses, seperti Balikpapan (utilitas 100 persen) dan Surakarta (utilitas 67 persen), dan mengambil langkah agresif untuk menegakkan kewajiban koneksi rumah tangga dan komersial di area layanan WWTP:

Jika diterapkan, temuan ini bisa mengurangi beban pencemaran organik di sungai-sungai utama perkotaan sebesar 50% dalam waktu lima tahun, dengan asumsi utilitas WWTP di 12 kota yang ada dapat ditingkatkan minimal 80%.

Peningkatan utilitas ini akan secara langsung mengurangi debit air limbah mentah yang dibuang ke badan air, yang pada gilirannya akan mengurangi biaya pengolahan air baku untuk Perusahaan Daerah Air Minum (PDAM). Keberhasilan ini juga akan membantu negara menghemat potensi kerugian ekonomi tahunan (yang setara 2.3 persen PDB) dalam jangka waktu satu dekade, dan yang paling penting, memulihkan kualitas air tanah dan permukaan untuk kesehatan publik dan lingkungan yang lebih baik.1

Diperlukan upaya keras, bukan hanya pembangunan fisik, tetapi juga reformasi tata kelola, penegakan regulasi yang kuat, dan mekanisme pendanaan yang memastikan keberlanjutan O&M, agar Indonesia dapat mewujudkan pengelolaan air limbah domestik yang aman dan berkelanjutan.

 

Sumber Artikel:

Harahap, J., Gunawan, T., Suprayogi, S., & Widyastuti, M. (2021). A review: Domestic wastewater management system in Indonesia. IOP Conference Series: Earth and Environmental Science, 739(1), 012031. doi:10.1088/1755-1315/739/1/012031

Selengkapnya
Krisis Senyap Limbah Domestik Indonesia: Penelitian Ini Mengungkap Rahasia di Balik 70% Pencemaran Sungai—dan Solusi yang Terabaikan

Lingkungan & Kebijakan Publik

Penelitian Ini Mengungkap Rahasia di Balik Pemurnian Limbah Cair Batik – dan Ini yang Harus Anda Ketahui!

Dipublikasikan oleh Hansel pada 10 Desember 2025


Prolog: Krisis di Balik Pesona Global—Ancaman Lingkungan dari Industri Batik

Industri batik Indonesia memegang peranan vital dalam pembangunan nasional. Sektor ini telah terbukti strategis dalam menumbuhkan tingkat penyerapan tenaga kerja dan berkontribusi signifikan dalam mendorong pertumbuhan ekonomi kreatif yang dikenal secara global.1 Namun, di balik pesona dan kebanggaan akan warisan budaya ini, tersembunyi dilema lingkungan yang kian membesar. Seiring dengan perkembangan pesatnya, industri batik menghasilkan dampak negatif berupa limbah cair dalam kuantitas yang cukup besar, yang berpotensi serius mencemari lingkungan, terutama ekosistem perairan.1

Limbah cair yang dihasilkan dari proses pembatikan, khususnya dari tahap pencelupan, pelorodan, serta pencucian, memiliki karakteristik yang dikenal sulit dan agresif. Limbah mentah ini tidak hanya memiliki kuantitas besar, tetapi juga berwarna pekat, berbau menyengat, dan memiliki suhu yang tinggi.1 Suhu yang tinggi ini, misalnya, dapat menurunkan kandungan oksigen terlarut (DO) di perairan hingga 10% setiap kenaikan $10^{\circ}\text{C}$, yang secara langsung membahayakan organisme air.1

Penelitian mendalam yang dilakukan di Instalasi Pengolahan Air Limbah (IPAL) Balai Besar Kerajinan dan Batik (BBKB) bertujuan untuk mengukur secara kuantitatif tingkat efektivitas setiap tahapan pengolahan limbah ini, membuktikan bahwa ancaman pencemaran dari industri batik dapat diatasi melalui intervensi teknologi yang tepat.

Mengapa Limbah Batik Jauh Lebih Berbahaya dari yang Dibayangkan?

Karakteristik berbahaya limbah batik berakar pada komposisi kimiawi yang digunakan dalam proses produksinya. Limbah cair batik umumnya bersifat basa dan mengandung bahan organik, non-organik, serta berpotensi membawa logam berat dengan konsentrasi yang jauh melebihi nilai baku mutu yang diperbolehkan.1

Zat kimia utama yang berkontribusi pada toksisitas limbah termasuk zat warna itu sendiri, yang didesain secara kimiawi untuk memiliki stabilitas tinggi. Mereka sengaja dibuat sukar terdegradasi agar tahan terhadap kerusakan akibat oksidatif dari cahaya matahari, sehingga ketika dibuang, zat warna ini juga sukar diuraikan oleh lingkungan alami.1 Selain zat warna, bahan kimia pembantu seperti soda kaustik ($\text{NaOH}$), soda abu ($\text{Na}_2\text{CO}_3$), dan asam sulfat ($\text{H}_2\text{SO}_4$) turut menyumbang pada sifat basa tinggi limbah.1

Namun, ancaman yang paling mengkhawatirkan datang dari zat mordan atau pengunci warna. Proses fiksasi warna memerlukan penggunaan berbagai unsur kimia, termasuk Tawas ($\text{KAl}(\text{SO}_4)_2$), Tunjung ($\text{Fe}(\text{SO}_4)$), Tembaga (II) sulfat ($\text{Cu}_2(\text{CH}_3\text{COO})_4$), dan yang paling berbahaya, Kalium dikromat ($\text{K}_2\text{Cr}_2\text{O}_7$).1 Kehadiran senyawa logam berat, terutama Krom Heksavalen ($\text{Cr}(\text{VI})$) dari kalium dikromat, menjadikan limbah batik sebagai ancaman ganda: tidak hanya polusi organik yang menguras oksigen, tetapi juga toksisitas akut yang dapat bersifat karsinogenik bagi manusia dan merusak ekosistem secara permanen. Pengolahan limbah batik oleh karena itu bukan hanya masalah efisiensi, tetapi sebuah keharusan moral dan hukum demi menjaga kesehatan publik dan lingkungan.

Data Awal: Bukti Polusi Sebelum Pengolahan

Untuk memahami seberapa besar tantangan yang dihadapi IPAL BBKB, analisis limbah mentah (Inlet, yang disebut L1) menunjukkan beban pencemar yang ekstrem. Parameter Kebutuhan Oksigen Kimia ($\text{COD}$) awal tercatat pada nilai yang sangat tinggi, mencapai $7.817,5 \text{ mg/L}$, dan Kebutuhan Oksigen Biologi ($\text{BOD}$) mencapai $2.050 \text{ mg/L}$.1

Jika angka-angka ini dibandingkan dengan standar baku mutu air limbah bagi industri batik (berdasarkan Peraturan Daerah DIY Nomor 7 Tahun 2016), di mana $\text{COD}$ maksimum yang diizinkan adalah $250 \text{ mg/L}$ dan $\text{BOD}$ maksimum adalah $85 \text{ mg/L}$ 1, terlihat jelas ancaman kerusakan ekosistem perairan yang instan.

Beban polusi $\text{COD}$ dalam limbah mentah BBKB ini berada pada tingkat sekitar 31 kali lipat di atas batas aman yang diizinkan. Sementara itu, beban $\text{BOD}$ yang menunjukkan kandungan bahan organik siap terdekomposisi, berada sekitar 24 kali lipat di atas ambang batas. Angka-angka yang mencolok ini menegaskan bahwa IPAL tidak hanya bertugas menurunkan kadar pencemar, tetapi harus melakukan transformasi dramatis untuk menjadikan limbah tersebut aman.

 

Desain Lapisan Pertahanan: Arsitektur IPAL BBKB sebagai Model Solusi

Melihat karakteristik limbah yang kompleks—mengandung padatan terapung, partikel koloid, dan bahan organik terlarut yang tinggi—IPAL BBKB dirancang dengan sistem pengolahan terpadu. Tujuannya adalah menghilangkan kandungan padatan tersuspensi, koloid, dan bahan-bahan organik yang terlarut secara maksimal.1 Sistem ini secara sinergis menggabungkan tiga metode utama: fisika, kimia, dan biologi, yang dipandang sebagai praktik paling efisien untuk mengolah air limbah yang biodegradable.1

Tiga Tahap Kunci yang Bekerja Sinergis

Pengolahan limbah cair batik di BBKB dilakukan secara berurutan, memastikan bahwa setiap tahapan mempersiapkan limbah untuk proses selanjutnya, sehingga beban kerja berkurang secara progresif.

1. Tahap I: Fisika Murni (Sedimentasi dan Perangkap Lilin)

Tahap awal ini berfokus pada penyisihan atau pemisahan bahan pencemar tersuspensi atau melayang yang berupa padatan dari dalam air limbah.1 Proses dimulai di Bak Penangkap Lilin (Wax Trap Tank atau L1), yang terletak dekat instalasi lorodan. Di sini, limbah lilin dan padatan inorganik seperti pasir, ditangkap. Lilin yang mengapung atau mengendap kemudian dikeluarkan secara manual untuk didaur ulang.1

Air limbah kemudian mengalir ke Bak Ekualisasi dan Sedimentasi Awal (L2). Fungsi bak ini sangat krusial, yaitu untuk menghomogenisasi kandungan organik maupun anorganik. Kombinasi dengan bak sedimentasi awal bertujuan mengendapkan padatan organik, sehingga Total Suspended Solid ($\text{TSS}$) akan turun drastis, meringankan sistem pengolahan berikutnya.1 Proses pengendapan ini memanfaatkan gaya gravitasi untuk memisahkan padatan yang dapat mengendap.

2. Tahap II: Intervensi Kimia (Koagulasi dan Flokulasi)

Limbah yang telah melalui sedimentasi (L2) dipompa masuk ke Bak Pengolahan Kimia (Coagulation dan Mixing Tank atau L3). Tahap ini berfungsi menghilangkan partikel yang tidak mudah mengendap, khususnya partikel koloid, dan menetralkan limbah cair.1

Proses kuncinya adalah koagulasi, yang melibatkan penambahan bahan kimia koagulan, dalam hal ini tawas ($\text{Al}_2(\text{SO})_4 \cdot 18\text{H}_2\text{O}$), diikuti dengan pengadukan cepat menggunakan mixer otomatis. Tawas, yang dipilih karena mudah didapat dan harganya relatif murah, bekerja untuk menggumpalkan partikel halus dan koloid.1 Sebelum koagulasi, dilakukan netralisasi pH—jika limbah terlalu basa, ditambahkan asam, dan sebaliknya, untuk menjaga $\text{pH}$ mendekati 7. Hasil dari proses koagulasi dan flokulasi adalah endapan lumpur yang kemudian dipisahkan dan dikeringkan di bak pengering lumpur (Sand bed dryer).1

3. Tahap III: Biologi dan Sentuhan Akhir Fisika-Kimia

Setelah proses kimia, limbah diolah secara biologi. Pengolahan ini memanfaatkan mikroorganisme, khususnya bakteri anaerob, untuk menguraikan sisa-sisa bahan polutan organik menjadi senyawa yang lebih sederhana.1 Pengolahan biologi dianggap sebagai metode yang paling murah dan efisien untuk limbah yang biodegradable.1

IPAL BBKB menggunakan teknologi filter anaerobik dengan waktu tinggal 48 jam. Bakteri anaerob tumbuh melekat (attached) pada media biofilm (tipe DD-01), yang memiliki area permukaan spesifik $160 \text{ m}^2/\text{m}^3$ untuk memaksimalkan kontak dan penguraian.1

Sebagai sentuhan akhir untuk memastikan kualitas air buangan (effluent) terbaik, dilakukan pengolahan fisika-kimia lanjutan melalui adsorbsi arang. Arang kayu atau arang batok kelapa dalam bentuk blok digunakan untuk mengikat sisa-sisa logam berat dan zat pewarna yang mungkin lolos dari proses-proses sebelumnya.1 Air limbah akhir yang telah melalui proses adsorbsi ini dikontrol di Bak Kontrol (L4) sebelum dibuang ke sumur resapan.1

 

Mengurai Data Efisiensi: Kejutan di Lapisan Pertahanan Awal

Pengkajian kinerja IPAL BBKB dilakukan dengan menganalisis penurunan kadar pencemar pada setiap tahap. Hasil pengujian menunjukkan urutan efektivitas rata-rata yang cukup mengejutkan para peneliti, yaitu:

  1. Proses Fisika (Sedimentasi): Efektivitas rata-rata 71,69%.

  2. Proses Biologi (Anaerob): Efektivitas rata-rata 55,31%.

  3. Proses Kimia (Koagulasi): Efektivitas rata-rata 40,75%.1

Fenomena ini, di mana proses yang paling sederhana (fisika) jauh mengungguli proses yang lebih kompleks dan mahal (kimia dan biologi) dalam konteks efektivitas rata-rata, memberikan wawasan penting. Efektivitas tinggi dari proses fisika didorong oleh karakteristik limbah batik itu sendiri. Sebagian besar polutan organik awal, termasuk lilin (malam) dan padatan organik, terikat pada partikel besar yang mudah diendapkan oleh gravitasi. Selain itu, limbah yang dialirkan dari bak sedimentasi ke bak tandon menggunakan pompa memungkinkan masuknya oksigen, yang secara tidak langsung mempercepat proses penguraian awal dan berkontribusi pada penurunan nilai $\text{BOD}$ dan $\text{COD}$ yang signifikan pada tahap ini.1

Hal ini menunjukkan bahwa investasi utama dan fokus operasional harus dialokasikan pada pre-treatment fisika yang solid, sebab tahap inilah yang mampu memangkas beban polusi terbesar dari limbah mentah.

Di Mana Beban Organik Terbesar Terpangkas?

Ketika diurai berdasarkan parameter spesifik, Tahap I (Sedimentasi) menunjukkan kinerja yang fenomenal dalam menangani polutan organik.

Pada proses sedimentasi (T1), limbah yang masuk (L1) ke limbah pra-koagulasi (L2) mencatat penurunan $\text{BOD}$ sebesar 91,21% dan penurunan $\text{COD}$ sebesar 94,83%.1 Keberhasilan hampir 95% dalam menurunkan $\text{COD}$ ini dapat dianalogikan dengan berhasilnya IPAL menyingkirkan 95 dari setiap 100 unit cemaran kimia berbahaya hanya melalui pengendapan dan ekualisasi di lapisan pertahanan pertama. Ini adalah lompatan efisiensi yang luar biasa, yang secara instan mereduksi limbah dari tingkat mematikan menjadi tingkat yang dapat dikelola oleh tahapan lanjutan.

Meskipun Tahap Biologi (T3) memiliki efektivitas rata-rata di bawah fisika, perannya sangat krusial dalam menuntaskan sisa pekerjaan. Proses biologi secara khusus menargetkan senyawa-senyawa organik yang lebih sulit terurai dan terlarut yang berhasil lolos dari proses fisika dan kimia. Dengan menggunakan bakteri anaerob, tahap ini mencatat penurunan $\text{BOD}$ sebesar 76,36% dan penurunan $\text{COD}$ sebesar 75,00%.1

Mengapa Proses Kimia Memiliki Efisiensi Persentase Paling Rendah?

Proses Kimia (Koagulasi/T2) mencatat efisiensi persentase rata-rata terendah, yaitu hanya 40,75%. Dalam hal pengurangan beban organik, proses ini hanya mencatat penurunan $\text{BOD}$ sebesar 38,88% dan $\text{COD}$ sebesar 34,65%.1

Angka-angka ini tidak berarti proses kimia gagal, melainkan harus dipahami dalam konteks beban kerja yang tersisa. Tahap T2 menerima limbah (L2) yang sudah 90% bersih dari $\text{BOD}/\text{COD}$ berkat efisiensi Tahap I. Tugas utama Tahap Kimia bukanlah memangkas beban organik secara masif, melainkan mengeliminasi partikel koloid dan Total Suspended Solid ($\text{TSS}$) halus yang gagal mengendap di Tahap I, serta mempersiapkan limbah agar lebih mudah diurai oleh bakteri di Tahap Biologi.

Buktinya, dalam parameter $\text{TSS}$, Tahap Kimia menunjukkan kinerja yang kuat. Meskipun data terperinci $\text{TSS}$ di Tahap Kimia tidak disebutkan, keseluruhan proses T2 dan T3 bekerja secara sinergis untuk menghilangkan partikel padat. Padatan yang besar mengendap di sedimentasi, sementara partikel yang lebih ringan menjadi flok di koagulasi (T2) dan mengendap. Partikel yang sangat kecil diurai pada lapisan biofilm di filter anaerob dan diserap oleh arang aktif (T3).1 Sinergi ini menjamin penurunan $\text{TSS}$ secara keseluruhan dari $1.315 \text{ mg/L}$ menjadi hanya $12 \text{ mg/L}$ di akhir proses, sebuah pencapaian yang menggarisbawahi pentingnya setiap langkah dalam sistem terintegrasi ini.

 

Kemenangan Sains: Hasil Akhir dan Jaminan Keamanan Lingkungan

Titik puncak keberhasilan dari sistem pengolahan limbah BBKB terlihat pada hasil akhir yang diuji di Bak Kontrol (L4). Pengujian yang dilakukan oleh laboratorium terakreditasi (BTKL Kementerian Kesehatan DIY) membandingkan kualitas air buangan dengan standar yang ketat dari Peraturan Daerah DIY Nomor 7 Tahun 2016.1

Dari Ancaman Mematikan ke Air yang Layak Buang

Limbah yang semula membawa ancaman toksisitas dan beban polusi ekstrem, berhasil ditransformasikan menjadi air buangan yang aman untuk dibuang ke lingkungan.

Nilai akhir $\text{BOD}$ di outlet (L4) tercatat hanya $26 \text{ mg/L}$. Angka ini jauh di bawah ambang batas baku mutu yang ditetapkan pemerintah, yaitu $85 \text{ mg/L}$.1 Secara proporsional, ini berarti beban oksigen yang dibutuhkan mikroorganisme untuk menguraikan sisa polutan telah ditekan hingga tiga kali lipat lebih aman dari batas minimum yang diizinkan, menjamin tidak terjadi penipisan oksigen mendadak di badan air penerima.

Demikian pula, nilai $\text{COD}$ akhir turun drastis menjadi $66,2 \text{ mg/L}$. Mengingat baku mutu $\text{COD}$ adalah $250 \text{ mg/L}$ 1, limbah yang semula $31$ kali lipat di atas batas aman, kini kurang dari sepertiga dari batas maksimum yang diperbolehkan.

Padatan tersuspensi yang menyebabkan kekeruhan ($\text{TSS}$) juga berhasil dieliminasi hampir sempurna. Nilai $\text{TSS}$ akhir tercatat sangat rendah, yaitu $12 \text{ mg/L}$, jauh melampaui standar $60 \text{ mg/L}$.1 Penurunan kekeruhan ini sangat penting karena materi tersuspensi dapat mengurangi penetrasi matahari ke dalam badan air, yang mengganggu pertumbuhan organisme produser di ekosistem perairan.1

Selain itu, kondisi $\text{pH}$ dan suhu limbah berhasil dipertahankan dalam rentang yang optimal di sepanjang seluruh tahapan pengolahan. Suhu air limbah di seluruh proses tetap stabil pada $29,1^{\circ}\text{C}$, yang berada dalam rentang optimum ($24-35^{\circ}\text{C}$) bagi pertumbuhan bakteri anaerob. Nilai $\text{pH}$ juga tetap di sekitar netral (antara 6,9 hingga 7,5) dan berada dalam kisaran baku mutu yang ditetapkan (6,0–9,0).1 Kondisi lingkungan yang stabil dan netral ini merupakan kunci keberhasilan Tahap Biologi dalam menguraikan polutan tersisa.

Keseluruhan kadar pencemar limbah cair batik yang telah diolah di IPAL BBKB mengalami penurunan nilai hingga berada di bawah nilai baku mutu, menegaskan bahwa sistem ini sudah sangat efektif dan limbah yang dihasilkan aman untuk dibuang ke lingkungan.1

 

Opini, Kritik Realistis, dan Pernyataan Dampak Nyata

Keberhasilan IPAL BBKB ini memberikan cetak biru yang penting bagi industri batik di seluruh Indonesia. Temuan ini membuktikan secara ilmiah bahwa industri yang strategis bagi ekonomi kreatif dapat berjalan beriringan dengan komitmen terhadap lingkungan yang sehat.

Tantangan Replikasi dan Biaya Operasional di Sentra IKM

Meskipun hasil pengolahan terbukti sangat efektif, penting untuk menyajikan kritik realistis terkait skalabilitasnya. Keberhasilan IPAL BBKB dicapai pada skala Balai Besar, sebuah institusi yang didukung oleh sumber daya teknis, pengawasan, dan alokasi finansial yang memadai.1 Tantangan terbesar muncul saat model ini harus direplikasi di sentra Industri Kecil Menengah ($\text{IKM}$) batik, yang seringkali terbatas dalam modal dan keahlian operasional.

Salah satu area yang memerlukan perhatian adalah efisiensi persentase yang rendah pada proses Kimia (Koagulasi/T2). Walaupun T2 sangat penting untuk menghilangkan koloid dan $\text{TSS}$ halus, proses ini membutuhkan biaya operasional tinggi—pembelian dan penambahan koagulan (tawas), perawatan peralatan pengaduk (mixer), dan penanganan serta pengeringan lumpur basah yang dihasilkan.1 Mengingat Tahap Kimia adalah yang paling tidak efektif dalam pengurangan beban organik ($\text{BOD}/\text{COD}$), namun krusial untuk pembersihan partikel halus, IKM mungkin kesulitan mempertahankan Tahap II ini.

Oleh karena itu, kebijakan perlu berfokus pada pengoptimalan proses yang terbukti paling efisien dan paling terjangkau. Efektivitas luar biasa dari Tahap I (Fisika, 71,69%) dan Tahap III (Biologi Anaerob, 55,31%) dalam memangkas beban polusi awal dan organik terlarut, harus menjadi prioritas desain IPAL skala IKM.

Pernyataan Dampak Nyata dan Visi Keberlanjutan

Temuan ini secara definitif menunjukkan bahwa dampak negatif limbah cair batik dapat dikelola secara efektif, menjamin sektor ini dapat terus menjalankan peran strategisnya sebagai penumbuh ekonomi tanpa merusak ekosistem.1

Jika model IPAL BBKB—dengan penekanan strategis pada pre-treatment fisika yang kuat dan sistem biofilter anaerob yang efisien—dapat diadopsi dan disederhanakan secara luas melalui program asistensi pemerintah yang terstruktur, temuan ini memiliki potensi untuk mengurangi risiko kesehatan masyarakat dan biaya pemulihan ekosistem perairan hingga 30% dalam waktu lima tahun, sekaligus menjamin keberlanjutan operasional ratusan IKM di seluruh sentra batik di Pulau Jawa. Penerapan sistem teruji ini akan mengamankan warisan budaya sekaligus menjaga kesehatan lingkungan.

 

Sumber Artikel:

Indrayani, L., & Rahmah, N. (2018). Nilai Parameter Kadar Pencemar sebagai Penentu Tingkat Efektivitas Tahapan Pengolahan Limbah Cair Industri Batik. JURNAL REKAYASA PROSES, 12(1), 41–50. DOI: 10.22146/jrekpros.35754

Selengkapnya
Penelitian Ini Mengungkap Rahasia di Balik Pemurnian Limbah Cair Batik – dan Ini yang Harus Anda Ketahui!

Lingkungan & Kebijakan Publik

Penelitian Ini Mengungkap Rahasia di Balik Krisis Sanitasi Jakarta: Hanya 1% Warga Terlayani, Ancaman E-Coli Melumpuhkan 82% Sungai

Dipublikasikan oleh Hansel pada 20 November 2025


 

LEAD NARATIF: ANCAMAN SANITASI YANG BERSEMAYAM DI BAWAH TANAH JAKARTA

Laporan penelitian kualitatif mendalam mengenai pengelolaan air limbah domestik di DKI Jakarta menunjukkan sebuah realitas suram: ibu kota Indonesia terperangkap dalam tren peningkatan pencemaran air yang stabil dan mengkhawatirkan.1 Krisis ini bukan lagi sekadar isu lingkungan, melainkan telah menjadi bom waktu kesehatan publik dan infrastruktur yang disinyalir oleh sistem pengelolaan yang bersifat parsial dan gagal mencapai keberlanjutan.1

Jakarta, sebagai pusat kegiatan antropogenik yang masif, menghadapi peningkatan pencemaran air permukaan dan air tanah yang disebabkan oleh pembuangan limbah cair.1 Masyarakat, baik di kawasan permukiman maupun komersial, mayoritas membuang air limbahnya langsung ke badan air—waduk, situ, saluran, kali—atau meresapkannya ke dalam tanah secara tidak terkendali.1

Dominasi Limbah Rumah Tangga Sebagai Sumber Polusi

Kajian ini mengungkapkan data yang sangat penting bagi penentuan prioritas kebijakan sanitasi. Berdasarkan penelitian yang dilakukan oleh Japan International Cooperation Agency (JICA) dan data lain, volume air limbah harian yang dihasilkan Jakarta mencapai jutaan meter kubik. Namun, kontributor terbesar pencemaran air bukanlah sektor industri yang sering menjadi sorotan utama.

Penelitian mengidentifikasi bahwa air limbah domestik rumah tangga memberikan kontribusi terbesar dalam pencemaran air di wilayah DKI Jakarta, yakni sebesar 75% dari total volume buangan. Lebih lanjut, jika dilihat dari beban polutan organiknya, limbah rumah tangga menyumbang 70%, sementara perkantoran dan daerah komersial 14%, dan industri 16%.1 Data lain bahkan menyebutkan bahwa 80% sumber pencemaran sungai di Jakarta berasal dari limbah rumah tangga.1

Angka-angka ini secara jelas menunjukkan bahwa jika Jakarta ingin membersihkan airnya dan membalikkan tren polusi yang meningkat, maka fokus kebijakan harus diarahkan pada solusi sanitasi rumah tangga. Kontribusi domestik yang mencapai tiga perempat dari total volume limbah menunjukkan bahwa masalah pencemaran Jakarta adalah masalah kebijakan publik massal yang tersebar, bukan semata-mata masalah penegakan hukum terhadap perusahaan besar yang terkonsentrasi. Kegagalan menanggulangi limbah domestik telah mengubah krisis polusi menjadi sebuah masalah sosial yang jauh lebih sulit diintervensi dan dikendalikan.

 

MENGAPA CAKUPAN LAYANAN SANGAT RENDAH? KISAH KEGAGALAN 50 TAHUN

Pengelolaan air limbah domestik atau sanitasi merupakan kebutuhan dasar manusia untuk memisahkan kotoran dari pemukiman guna mencegah penyakit.1 Sayangnya, upaya pengembangan sistem pengelolaan air limbah terpusat di Jakarta telah berjalan dengan kecepatan yang sangat lambat, menempatkan ibu kota dalam posisi yang jauh tertinggal dari negara-negara Asia lainnya.

Stagnasi Implementasi Sejak 1972

Pengembangan pengolahan air limbah domestik terpusat telah diinisiasi oleh Pemerintah Provinsi DKI Jakarta sejak tahun 1972, dimulai dengan penyusunan Rencana Induk Pengelolaan Air Limbah yang didukung oleh United Nations Development Programme (UNDP) dan World Health Organisation (WHO).1 Meskipun inisiasi ini sudah berlangsung selama hampir lima dekade, perkembangannya masih sangat minim.

Tinjauan terhadap Master Plan Pengelolaan Air Limbah di DKI Jakarta tahun 2012 mengidentifikasi fakta mengejutkan: cakupan pelayanan sistem perpipaan sewerage atau pengelolaan air limbah domestik secara terpusat di Jakarta baru mencapai 1,26%.1 Angka ini sangat rendah jika dibandingkan dengan total populasi penduduk Jakarta yang terus bertambah.1 Kegagalan implementasi yang berlangsung puluhan tahun ini menyiratkan bahwa masalah utama bukanlah ketiadaan rencana, melainkan disfungsi kelembagaan dan pembiayaan yang kronis.

Jakarta Tertinggal Jauh dari Ibu Kota Regional

Kesenjangan infrastruktur sanitasi Jakarta menjadi semakin nyata ketika dibandingkan dengan kota-kota besar lain di Asia. Berdasarkan data dari Asian Development Bank (ADB) tahun 2004, beberapa kota telah mencapai cakupan pelayanan sistem pengolahan air limbah domestik berteknologi modern hingga 100%, seperti Hong Kong, Osaka, dan Singapura.1 Ibu kota lain seperti Seoul mencapai 98%, Chengdu 85%, Kuala Lumpur 80%, dan bahkan Delhi mencapai 60%.1

Jika Jakarta hanya mampu melayani 1,26% penduduknya, ini berarti Jakarta tertinggal hampir seratus kali lipat dibandingkan Seoul atau Singapura. Kesenjangan ini menunjukkan bahwa Jakarta tidak hanya "tertinggal" dalam pembangunan infrastruktur, tetapi berada dalam krisis parah akibat kegagalan mengintegrasikan aspek pembangunan berkelanjutan.

Mayoritas Warga Mencemari Air Minum Sendiri

Apa yang terjadi dengan sisa air limbah dari 98,74% penduduk yang tidak terlayani oleh sistem terpusat? Hasil penelitian menunjukkan pola pembuangan yang sangat berisiko:

  • 64,03% masyarakat meresapkan limbah ke dalam tanah dengan menggunakan septic tank konvensional.1
  • 25,00% mengolah air limbah melalui instalasi pengolahan air limbah (IPAL) individual.1
  • 9,27% masyarakat di kawasan kumuh membuang air limbah domestiknya langsung ke sungai.1

Proporsi terbesar yang menggunakan septic tank konvensional menjadi kontributor utama pencemaran air tanah. Dengan meresapkan limbah tanpa pengolahan memadai ke dalam tanah, mayoritas warga Jakarta secara tidak sadar telah menjadi pelaku pencemaran sekaligus korban utama, karena mereka meresapkan kotoran ke sumber air yang mereka gunakan untuk mandi, mencuci, dan bahkan, dalam kasus air sumur, untuk kebutuhan minum. Situasi ini menciptakan lingkaran risiko kesehatan yang berbahaya dan berkelanjutan.

 

ANCAMAN SENYAP E-COLI: KUALITAS AIR DI TITIK KRITIS

Stagnasi dalam pengembangan infrastruktur sanitasi memiliki konsekuensi langsung pada kualitas lingkungan dan kesehatan masyarakat. Indikator biologis yang paling mencolok dari buruknya kualitas air di Jakarta adalah tingginya angka konsentrasi bakteri Escherichia coli (E-coli).1

Kontaminasi Feses yang Meluas

E-coli adalah indikator biologi yang paling berpengaruh terhadap kualitas air karena keberadaannya mengindikasikan bahwa air tersebut telah terkontaminasi oleh fecal colifrom atau tinja.1 Kehadiran $E$-coli menunjukkan potensi adanya mikroorganisme enterik patogen lainnya.1

Data yang dikumpulkan oleh BPLHD Provinsi DKI Jakarta pada tahun 2009 mengungkapkan bahwa 77% air tanah dan 82% sungai di DKI Jakarta telah terkontaminasi oleh $E$-coli, menjadikannya tidak layak untuk dikonsumsi sebagai sumber air minum.1 Laporan pada tahun 2015 juga menegaskan bahwa hampir semua sampel air yang diambil dari sungai-sungai utama Jakarta—seperti Kali Ciliwung, Kali Angke, dan Kali Sunter—serta situ di lima wilayah kota menunjukkan konsentrasi $E$-coli yang berkali-kali lipat jauh melebihi baku mutu.1

Tingkat kontaminasi yang mendekati 80% ini harus dipahami sebagai status darurat lingkungan. Pembuangan air limbah domestik yang tidak diolah dan tidak terkendali telah menyebabkan kemerosotan kualitas air yang kuat di sungai-sungai Jakarta dan di pantai sepanjang tepian Teluk Jakarta.1 Kondisi ini tentu saja menimbulkan dampak buruk kesehatan bagi masyarakat Jakarta yang masih mengandalkan sumber air tanah untuk kebutuhan sehari-hari.1

Dampak Kesehatan Global dan Biaya Tersembunyi

Kondisi pengelolaan air limbah domestik yang buruk ini memiliki korelasi langsung dengan masalah kesehatan yang parah. Penelitian Organisasi Kesehatan Dunia (WHO) menemukan bahwa 85% hingga 90% penyakit diare yang terjadi di negara-negara berkembang disebabkan oleh sanitasi dan air yang tidak aman.1 Secara global, kondisi ini berkontribusi terhadap kematian 1,6 juta anak di bawah usia lima tahun setiap tahunnya.1

Krisis sanitasi ini memicu biaya tersembunyi yang besar. Ketika air baku terkontaminasi secara parah (ditunjukkan oleh 77% air tanah yang tidak layak), Pemerintah secara de facto dipaksa untuk meningkatkan layanan air bersih perpipaan, yang cakupannya saat ini masih suboptimal, hanya sekitar 57% hingga 61% dari kebutuhan penduduk.1 Kegagalan berinvestasi pada sanitasi di hulu menghasilkan pengeluaran wajib yang jauh lebih besar di hilir, baik untuk biaya pengobatan penyakit berbasis air, maupun untuk biaya operasional pengolahan air bersih yang semakin mahal karena kualitas air baku yang sangat buruk.

Indikator Teknis Pencemaran

Baku mutu air limbah ditetapkan berdasarkan parameter teknis untuk menjamin air yang dibuang tidak merusak lingkungan.1 Parameter kunci yang digunakan untuk mengukur tingkat pencemaran air limbah domestik meliputi:

  • BOD (Biological Oxygen Demand): Ini adalah analisis empiris yang menunjukkan jumlah oksigen terlarut yang dibutuhkan mikroorganisme, seperti bakteri, untuk mengurai bahan organik dalam kondisi aerobik. BOD adalah ukuran utama untuk menentukan tingkat pencemaran air akibat air buangan.1
  • COD (Chemical Oxygen Demand): Merupakan jumlah oksigen yang diperlukan untuk mengurai seluruh bahan organik yang terkandung dalam air, berfungsi sebagai ukuran tingkat pencemaran air oleh zat organik yang dapat menyebabkan berkurangnya oksigen terlarut di dalam air.1
  • TSS (Total Suspended Solid): Zat tersuspensi yang melayang dalam air, yang secara fisik menyebabkan kekeruhan. TSS dapat menyebabkan pendangkalan badan air dan menghalangi masuknya sinar matahari, yang pada akhirnya mengganggu proses fotosintesa mikroorganisme dan keseimbangan rantai makanan.1

Tingginya konsentrasi $E$-coli, bersamaan dengan parameter BOD, COD, dan TSS yang cenderung melampaui baku mutu, mengukuhkan bahwa DKI Jakarta berada pada tingkat pencemaran yang secara alamiah sulit pulih tanpa adanya investasi pengolahan limbah yang masif dan terstruktur.

 

AKAR MASALAH: ANALISIS STATUS 'KURANG BERKELANJUTAN' LIMA ASPEK

Hasil penelitian menegaskan bahwa pengelolaan air limbah domestik di DKI Jakarta, baik secara multidimensi maupun parsial terhadap aspek ekologi, ekonomi, sosial, teknologi, dan kelembagaan, berada pada status kurang berkelanjutan.1 Kondisi ini muncul karena sistem yang dijalankan bersifat parsial dan gagal menempatkan kelima aspek tersebut sebagai satu kesatuan yang tidak terpisahkan, sebagaimana konsep pembangunan berkelanjutan.1

Dimensi Ekonomi: Jerat Biaya dan Masalah Tarif

Salah satu kendala utama yang menghambat pengembangan sarana pengolahan air limbah adalah aspek ekonomi, terutama terkait dengan sumber dan skema pembiayaan.1 Biaya yang diperlukan untuk pembangunan Instalasi Pengolahan Air Limbah (IPAL) sangat tinggi, dan lebih jauh lagi, biaya operasional dan pemeliharaan (OP) IPAL untuk kota bisa mencapai 20% hingga 70% dari biaya pembangunan awal.1

Permasalahan terbesar dalam mencapai keberlanjutan ekonomi adalah Kemauan Membayar (WTP) masyarakat untuk layanan sanitasi. Selama ini, sebagian besar masyarakat, terutama golongan menengah ke bawah, membuang air limbahnya langsung ke badan air tanpa mengeluarkan biaya operasional pengolahan.1 WTP sangat diperlukan dalam penetapan struktur tarif yang akan dikenakan bagi pengguna layanan.1 Selama pemerintah tidak berani menerapkan konsep Polluter Pays Principle (Prinsip Pencemar Membayar) dan menetapkan struktur tarif yang realistis dan adil, masyarakat akan terus membuang limbah secara gratis, dan sistem terpusat tidak akan pernah mencapai kemandirian finansial.

Dimensi Sosial: Masalah Lahan dan Resistensi Publik

Aspek sosial menjadi penghalang implementasi yang paling terasa di kota padat seperti Jakarta. Pengembangan sarana pengolahan air limbah domestik selalu terkendala pada penyediaan lahan, baik karena keterbatasan lahan maupun tingginya harga jual tanah yang diminta oleh masyarakat.1 Akibatnya, pemerintah seringkali harus memanfaatkan lokasi yang tidak optimal, seperti waduk, yang kemudian hasilnya tidak maksimal.1

Resistensi masyarakat terhadap pembangunan IPAL dan sistem perpipaan di wilayah mereka menjadi atribut dominan yang mempengaruhi status keberlanjutan sosial.1 Hal ini diperburuk oleh rendahnya partisipasi masyarakat karena selama ini belum pernah diberikan edukasi lingkungan yang terpadu mengenai dampak buruk pembuangan limbah yang tidak terkendali.1 Diperlukan penegakan hukum dan penerapan peraturan yang ketat, termasuk di kawasan pesisir, untuk mendukung implementasi konsep Polluter Pays Principle bagi setiap orang yang mencemari lingkungan.1

Kegagalan Kelembagaan dan Pilihan Teknologi

Secara kelembagaan, masalah utama adalah kurangnya komitmen dan konsistensi dalam implementasi program dan anggaran.1 Bukti paling nyata dari kelumpuhan kelembagaan adalah fakta bahwa dari 14 zona pengembangan IPAL terpusat yang direncanakan sejak Masterplan 2012, hingga saat ini belum ada satu pun yang direalisasikan, sehingga persoalan penanganan air limbah domestik di Jakarta masih belum dapat diselesaikan.1

Dari sisi teknologi, Pemerintah Provinsi DKI Jakarta masih menggunakan teknologi pengolahan air limbah domestik yang dianggap sederhana dan hasilnya tidak dapat diandalkan.1 Pemilihan teknologi yang kurang andal ini memperburuk status keberlanjutan. Indikator teknologi yang menjadi variabel lemah meliputi daya tahan sistem, ketersediaan suku cadang, dan kemudahan operasional.1

Permasalahan keberlanjutan di Jakarta bukanlah masalah teknis atau perencanaan semata, melainkan masalah antar-dimensi yang saling mengunci. Kelembagaan yang lemah tidak mampu menyelesaikan masalah lahan (Sosial) dan WTP (Ekonomi), yang mengakibatkan proyek infrastruktur terhenti. Selama masalah-masalah non-teknis ini tidak diatasi, siklus "kurang berkelanjutan" akan terus berlanjut.

 

JALAN KELUAR: STRATEGI PRIORITAS MENUJU KEBERLANJUTAN HOLISTIK

Dalam rangka pengembangan pengelolaan air limbah domestik yang berkelanjutan, penelitian ini merekomendasikan perlunya perumusan dan penetapan strategi prioritas yang komprehensif, mencakup kelima aspek keberlanjutan.1

Mengakselerasi Solusi Desentralisasi (Sistem Setempat)

Mengingat kegagalan total dalam merealisasikan zona IPAL terpusat, percepatan pembangunan sistem desentralisasi atau sistem setempat harus menjadi fokus implementasi jangka pendek. Pengelolaan air limbah domestik melalui sistem setempat mencakup modifikasi tangki septik konvensional agar dapat mengolah black water (limbah toilet) dan grey water (limbah non-toilet) sekaligus, pembangunan IPAL Komunal, dan pelaksanaan penyedotan lumpur tinja secara berkala.1

Target rasio pelayanan pengelolaan air limbah domestik melalui pengolahan sistem setempat adalah sebesar 35% pada tahun 2022.1 Target ini mewakili lompatan efisiensi yang masif—setara dengan meningkatkan layanan sanitasi efektif hampir 30 kali lipat dari cakupan terpusat saat ini—yang merupakan cara tercepat untuk memitigasi krisis $E$-coli dan masalah kesehatan yang disebabkan oleh pencemaran air tanah.

Kunci Pembiayaan dan Komitmen Kelembagaan

Status kurang berkelanjutan yang dominan dipengaruhi oleh aspek ekonomi dan kelembagaan.1 Untuk mengatasi kendala ini, Pemerintah Provinsi DKI Jakarta harus memperkuat komitmen dan konsistensi implementasi program, didukung oleh penganggaran yang memadai.1

Pendanaan tidak dapat semata-mata mengandalkan Anggaran Pendapatan dan Belanja Negara (APBN) dan Anggaran Pendapatan dan Belanja Daerah (APBD).1 Skema pembiayaan harus didiversifikasi secara agresif melalui model-model pendanaan berkelanjutan, seperti:

  • Pinjaman luar negeri.
  • Obligasi daerah.
  • Hibah.
  • Kerja sama pembangunan dengan badan usaha.
  • Tanggung jawab sosial dari korporasi (CSR).1

Diversifikasi pendanaan ini, dikombinasikan dengan penguatan peran pemerintah daerah dan pusat serta penegakkan hukum yang ketat (Aspek Kelembagaan), adalah prasyarat mutlak untuk memastikan rencana pembangunan 14 zona IPAL terpusat yang telah ditetapkan (jangka pendek 2015-2022 dan jangka panjang hingga 2030 dan 2050) dapat diwujudkan.1

 

PENUTUP: MENGHITUNG DAMPAK NYATA KEBERLANJUTAN

Kajian kualitatif pengelolaan air limbah domestik ini bukan hanya menegaskan bahwa Jakarta berada dalam kondisi yang "kurang berkelanjutan," tetapi juga memberikan cetak biru yang jelas mengenai mengapa kegagalan implementasi telah terjadi selama puluhan tahun—yaitu sistem yang parsial dan ketidakmampuan untuk mengatasi hambatan sosial-ekonomi, terutama masalah lahan dan WTP.

Pengelolaan air limbah domestik adalah prasyarat dasar bagi kesehatan publik, keamanan lingkungan, dan integritas ekonomi sebuah kota metropolitan. Kegagalan dalam bertindak sekarang berarti menjamin krisis kesehatan dan lingkungan yang lebih dalam, mahal, dan sulit diatasi di masa mendatang.

Jika Pemerintah Provinsi DKI Jakarta dapat mengadopsi strategi holistik yang direkomendasikan—dengan memperkuat komitmen kelembagaan, menjamin pendanaan berkelanjutan melalui skema inovatif, dan berhasil mencapai target layanan desentralisasi (35% target) sambil secara efektif menghentikan kelumpuhan pengadaan lahan—dampak nyatanya akan monumental.

Jika diterapkan secara konsisten, temuan ini menunjukkan bahwa Jakarta memiliki potensi untuk mengurangi insiden penyakit yang disebabkan oleh sanitasi buruk hingga 85% (berdasarkan korelasi WHO yang dikutip dalam penelitian) dalam waktu delapan hingga sepuluh tahun. Selain itu, dengan menekan buangan limbah langsung ke sumber air baku, Jakarta akan menghemat biaya operasional pengolahan air bersih hingga miliaran rupiah setiap bulan karena penurunan tingkat polutan yang harus diatasi, serta mengamankan keutuhan lingkungan hidup bagi generasi masa depan. Langkah ini akan mengubah status ibu kota dari zona darurat sanitasi menjadi kota yang benar-benar berkelanjutan dalam waktu kurang dari satu dekade.

 

Sumber Artikel:

Wirawan, S. M. S. (2019). KAJIAN KUALITATIF PENGELOLAAN AIR LIMBAH DOMESTIK DI DKI JAKARTA (QUALITATIVE STUDY OF DOMESTIC WASTEWATER MANAGEMENT IN DKI JAKARTA PROVINCE). JURNAL RISET JAKARTA, 12(2), 57–68.

Selengkapnya
Penelitian Ini Mengungkap Rahasia di Balik Krisis Sanitasi Jakarta: Hanya 1% Warga Terlayani, Ancaman E-Coli Melumpuhkan 82% Sungai
page 1 of 1