Industrial Engineering
Dipublikasikan oleh Anjas Mifta Huda pada 07 Agustus 2025
Mengapa Predictive Maintenance Jadi Solusi Penting di Industri?
Dalam industri proses seperti kilang minyak, pemeliharaan peralatan memainkan peran kunci dalam menjaga kontinuitas produksi dan efisiensi operasional. Salah satu elemen vital dalam sistem ini adalah pompa sentrifugal, perangkat yang bertanggung jawab mengalirkan fluida dalam jumlah besar dalam jalur produksi. Namun, gangguan pada satu pompa saja dapat berdampak besar pada seluruh sistem, menyebabkan keterlambatan produksi dan kerugian finansial.
Untuk mengatasi tantangan ini, konsep Predictive Maintenance (PdM) mulai banyak diadopsi. PdM adalah pendekatan pemeliharaan yang memanfaatkan data sensor dan algoritma pembelajaran mesin (machine learning) untuk memprediksi kerusakan sebelum terjadi. Pendekatan ini berbeda dari Preventive Maintenance (yang bersifat rutin dan tidak fleksibel), karena didasarkan pada kondisi aktual peralatan, bukan jadwal tetap.
Dalam konteks ini, studi yang dilakukan oleh Damiano Dallapiccola di bawah kolaborasi Universitas Politécnica de Madrid dan Neste Oyj menjadi sangat relevan. Penelitian ini merancang sistem pendeteksi anomali otomatis berbasis jaringan neural, dengan fokus khusus pada pompa sentrifugal yang beroperasi di lingkungan kilang industri.
Tujuan Penelitian dan Pertanyaan yang Direspons
Studi ini tidak hanya mengusulkan pendekatan teknis, tetapi juga menjawab tiga pertanyaan penting yang menjadi dasar dari berbagai penerapan PdM di industri:
Untuk menjawab pertanyaan ini, peneliti mengembangkan, menguji, dan membandingkan empat model prediksi time series: Vector Autoregression (VAR) sebagai baseline statistik, serta tiga model berbasis machine learning, yaitu Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM), dan LSTM Autoencoder.
Mengenal Empat Model Prediktif yang Diuji
1. Vector Autoregression (VAR)
VAR adalah metode statistik klasik yang umum digunakan dalam prediksi multivariate time series—data berurutan waktu yang terdiri dari banyak variabel yang saling terkait. Meski mudah diimplementasikan, model ini memiliki keterbatasan dalam menangkap pola kompleks, terutama pada data nonlinear.
2. Multilayer Perceptron (MLP)
MLP adalah jenis dasar dari Feedforward Neural Network. Meskipun tidak memiliki memori untuk mengingat urutan data, model ini cukup efisien dan cepat untuk kasus prediksi jangka pendek dengan kompleksitas rendah.
3. Long Short-Term Memory (LSTM)
LSTM merupakan varian dari Recurrent Neural Network (RNN) yang dirancang untuk menangani dependensi jangka panjang dalam data sekuensial. Struktur internalnya terdiri dari tiga gerbang: forget gate, input gate, dan output gate, yang bekerja bersama untuk menyaring informasi mana yang penting untuk disimpan atau dilupakan.
4. LSTM Autoencoder
Model ini menggabungkan kekuatan LSTM dengan arsitektur Autoencoder, yaitu sistem dua bagian yang terdiri dari encoder (untuk mengkompresi data) dan decoder (untuk merekonstruksi data). Model ini dilatih hanya dengan data normal, dan error prediksi saat diuji pada data anomali akan menunjukkan tanda-tanda kerusakan.
Data dan Tantangan Realistis di Lapangan
Data dikumpulkan dari tiga pompa berbeda (A, B, C) yang digunakan secara bergiliran di kilang Neste di Porvoo, Finlandia. Sistem ini memiliki 83 sensor yang mengukur berbagai parameter seperti suhu, tekanan, laju aliran, dan tingkat pelumasan. Namun, hanya ada tiga kasus kerusakan aktual selama periode pengumpulan data, semuanya terkait dengan kebocoran segel mekanis.
Tantangan utama dari data:
Oleh karena itu, pendekatan yang digunakan bukan klasifikasi, melainkan forecasting error-based anomaly detection: model dilatih untuk memprediksi perilaku normal pompa dan kesalahan prediksi (error) dijadikan indikator adanya kerusakan.
Strategi Eksperimen: Dari Pelatihan Hingga Evaluasi
Seluruh model dievaluasi berdasarkan metrik:
Peneliti menguji 20 ambang batas (thresholds) berbeda untuk masing-masing model dan memilih yang menghasilkan F1-score terbaik. Hasilnya menunjukkan bahwa semua model machine learning mengungguli baseline statistik.
Catatan penting: Model LSTM Autoencoder menunjukkan F1-score tertinggi sebesar 0.986, dengan precision 0.973 dan recall 1.000—menunjukkan bahwa tidak ada satu pun fault yang terlewat (false negative = 0).
Hasil dan Interpretasi Praktis
Tabel di bawah ini menyajikan perbandingan lengkap performa tiap model:
Model
F1-Score
Accuracy
Precision
Recall
AUC
VAR
0.821
0.909
0.945
0.725
0.952
MLP
0.953
0.972
0.910
1.000
0.971
LSTM
0.915
0.949
0.882
0.951
0.961
LSTM Autoencoder
0.986
0.992
0.973
1.000
0.994
Analisis praktis:
Model Umum vs Spesifik: Mana yang Lebih Efisien?
Salah satu pertanyaan penting adalah apakah satu model bisa digunakan untuk semua pompa, atau perlu dibuat model terpisah.
Model
F1 (Spesifik)
F1 (General)
VAR
0.842
0.821
MLP
0.960
0.953
LSTM
0.921
0.915
LSTM Autoencoder
0.991
0.986
Hasil menunjukkan bahwa model umum (general model) tetap mampu mempertahankan performa tinggi, sehingga lebih hemat waktu dan sumber daya karena hanya satu model perlu dipelihara.
Opini dan Kritik Konstruktif terhadap Penelitian
Kekuatan:
Kelemahan:
Saran untuk Pengembangan Selanjutnya
Penelitian ini membuka banyak peluang eksplorasi lebih lanjut:
Penutup: Aplikasi Dunia Nyata dari Machine Learning
Studi ini menekankan bahwa predictive maintenance bukan sekadar teori futuristik. Dengan pendekatan yang tepat, bahkan data terbatas pun bisa menghasilkan model yang akurat, andal, dan siap dioperasikan.
LSTM Autoencoder terbukti bukan hanya unggul secara teori, tetapi juga secara praktis, menjadikannya kandidat kuat untuk implementasi PdM di berbagai sektor industri berat. Model ini tak hanya mendeteksi kerusakan lebih awal, tetapi juga membuka jalan menuju pemeliharaan berbasis AI yang efisien, hemat biaya, dan scalable.
📌 Referensi asli:
Dallapiccola, D. (2020). Predictive Maintenance of Centrifugal Pumps: A Neural Network Approach. Universidad Politécnica de Madrid & Aalto University.
DOI resmi atau akses dapat ditemukan di: https://aaltodoc.aalto.fi/handle/123456789/xxxxxx