Teknologi AI

Deteksi Cacat Kain Otomatis dengan Kecerdasan Buatan

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025


Mengapa Inspeksi Otomatis Jadi Urgensi Baru dalam Industri Tekstil?

Industri tekstil global terus berkembang pesat, dan di tengah tuntutan efisiensi serta kualitas tanpa kompromi, masalah lama kembali menghantui: cacat pada kain. Entah berupa benang hilang, noda minyak, atau lubang kecil—cacat seperti ini bisa mengurangi nilai jual, menciptakan limbah, dan membahayakan reputasi produsen.

Selama bertahun-tahun, inspeksi visual oleh manusia menjadi metode utama dalam pengecekan mutu. Tapi pendekatan ini terbukti tidak konsisten, lambat, dan rentan terhadap kelelahan fisik maupun subjektivitas pengamat. Oleh karena itu, muncul kebutuhan mendesak akan sistem inspeksi otomatis yang cepat, akurat, dan hemat biaya.

Penelitian dari Reethu Rajan dan Sangeetha Gopinath menjawab kebutuhan ini melalui pendekatan berbasis pengolahan citra digital dan jaringan saraf tiruan (neural network) untuk mendeteksi serta mengklasifikasikan cacat pada kain secara otomatis. Penelitian ini bukan hanya teoretis—ia menawarkan kerangka kerja yang bisa diimplementasikan langsung dalam jalur produksi industri tekstil.

 

H2: Memahami Masalah: Jenis Cacat dan Tantangan Manual Inspeksi

Jenis-Jenis Cacat yang Umum pada Kain

Dalam produksi kain, cacat dapat terjadi mulai dari proses pemilihan bahan baku hingga tahap akhir penyelesaian. Beberapa jenis cacat utama yang dicermati dalam penelitian ini meliputi:

  • Benang hilang (missing thread) pada arah warp atau weft, yang memengaruhi struktur dan kekuatan kain.
  • Noda minyak (oil stain), yang biasanya muncul akibat proses mekanis atau pelumas mesin.
  • Lubang kecil (holes) yang dapat muncul karena keausan mekanis atau kesalahan dalam proses tenun.

Cacat-cacat ini bukan hanya mengganggu estetika, tetapi juga dapat menurunkan performa dan ketahanan kain.

Masalah Inspeksi Manual

Beberapa tantangan utama dari pemeriksaan manual meliputi:

  • Kelelahan visual: Inspektur harus mengawasi permukaan luas dalam waktu lama, yang membuat konsistensi sulit dijaga.
  • Kesalahan manusiawi: Faktor seperti kelelahan, pengalaman, dan subjektivitas membuat inspeksi rentan terhadap kesalahan.
  • Biaya tinggi: Mempekerjakan banyak inspektur untuk skala produksi besar tidak efisien.

Inilah celah yang ingin diisi oleh sistem deteksi otomatis berbasis teknologi.

 

H2: Solusi yang Ditawarkan: Neural Network dan Pengolahan Citra

Penelitian ini merancang sistem deteksi cacat kain otomatis dengan empat tahap utama:

1. Akuisisi Citra Kain

Langkah awal adalah mengambil gambar digital dari kain menggunakan scanner atau kamera beresolusi tinggi. Citra ini menjadi input awal untuk seluruh sistem deteksi.

2. Pra-pemrosesan Citra (Image Preprocessing)

Tahapan ini bertujuan untuk membersihkan citra dari gangguan atau “noise” seperti bayangan atau pencahayaan yang tidak merata. Teknik seperti filtering atau contrast enhancement digunakan untuk memperjelas fitur-fitur cacat yang akan dideteksi.

3. Ekstraksi Fitur (Feature Extraction)

Dari citra yang sudah bersih, sistem menganalisis tiga parameter utama:

  • Tingkat keberadaan garis lurus – untuk mendeteksi cacat struktural seperti benang putus.
  • Proporsi area gelap – membantu mendeteksi noda minyak.
  • Tingkat kekosongan atau void – berguna untuk mendeteksi lubang pada kain.

Fitur-fitur ini menjadi representasi digital dari potensi cacat, dan disiapkan untuk proses klasifikasi berikutnya.

4. Klasifikasi dengan Neural Network

Setelah fitur terkumpul, jaringan saraf tiruan dilatih untuk mengenali dan mengklasifikasikan jenis cacat berdasarkan pola fitur tersebut. Proses pelatihan menggunakan algoritma backpropagation, di mana bobot koneksi antar neuron disesuaikan hingga jaringan mampu memberikan klasifikasi akurat.

 

H2: Studi Kasus dan Evaluasi

Eksperimen pada Berbagai Jenis Cacat

Model diuji menggunakan sampel kain dengan berbagai jenis cacat. Gambar digital dibandingkan dengan citra standar dalam basis data. Jika terjadi ketidaksesuaian, sistem akan mendeteksi adanya cacat, membunyikan buzzer sebagai alarm, dan menampilkan jenis cacat di layar LCD.

Hasil awal menunjukkan bahwa sistem mampu mendeteksi tiga jenis cacat utama—benang hilang, noda minyak, dan lubang—dengan akurasi tinggi. Namun, peneliti mengakui bahwa pengembangan masih berjalan, khususnya pada tahap penyempurnaan fitur.

 

H2: Nilai Tambah dan Keunggulan Sistem Ini

Efisiensi Produksi

Dengan sistem ini, inspeksi kain bisa dilakukan secara real-time, langsung dalam jalur produksi. Hal ini mempersingkat waktu pengecekan dan mengurangi potensi kesalahan manusia.

Konsistensi dan Objektivitas

Berbeda dari inspektur manusia yang terpengaruh kondisi fisik dan emosional, sistem ini memberikan hasil yang konsisten dan objektif dalam setiap pengecekan.

Dapat Diintegrasikan dengan Sistem Industri 4.0

Karena berbasis digital dan terotomatisasi, sistem ini dapat menjadi bagian dari ekosistem manufaktur cerdas (smart manufacturing) yang mendukung kontrol kualitas berbasis data.

 

H2: Komparasi dengan Metode Lain

Metode Tradisional vs Neural Network

Sistem yang diteliti di sini menggunakan pendekatan neural network, yang memiliki kemampuan belajar dari data dan menangani variasi yang kompleks. Berbeda dengan pendekatan rule-based atau thresholding konvensional yang kaku, neural network bisa mengenali pola meski dengan deformasi atau pencahayaan berbeda.

Studi Sebelumnya dan Pendekatan Alternatif

Penelitian lain telah mencoba berbagai metode seperti:

  • Butterworth filter untuk mendeteksi cacat berdasarkan frekuensi.
  • Gabor wavelets untuk analisis tekstur.
  • Pulse Coupled Neural Networks (PCNN) untuk segmentasi citra.

Namun, banyak dari pendekatan tersebut berfokus pada satu jenis cacat atau membutuhkan komputasi tinggi. Pendekatan Rajan & Gopinath lebih sederhana dan praktis untuk implementasi di pabrik.

 

H2: Tantangan dan Kritik

Meski menjanjikan, sistem ini masih memiliki beberapa keterbatasan:

  • Skala uji coba masih terbatas: Uji coba dilakukan pada jenis cacat yang spesifik dan jumlah sampel terbatas.
  • Klasifikasi multi-defect belum dijelaskan secara rinci: Misalnya, jika satu kain memiliki lebih dari satu cacat, belum jelas bagaimana sistem menanganinya.
  • Fleksibilitas terhadap variasi tekstur atau warna kain belum diuji luas.

Namun demikian, sebagai prototipe awal, pendekatan ini sudah sangat menjanjikan dan aplikatif.

 

H2: Arah Pengembangan Selanjutnya

Penelitian ini bisa dikembangkan ke arah:

  • Pendeteksian multiklas cacat kompleks menggunakan CNN (Convolutional Neural Network).
  • Integrasi dengan robotic arm untuk mengeliminasi kain cacat secara otomatis.
  • Sistem cloud-based monitoring agar manajer kualitas bisa memantau data secara real-time.
  • Penerapan pada bahan selain kain, seperti kulit sintetis, plastik laminasi, atau material komposit.

 

H2: Kesimpulan

Studi ini memperlihatkan bagaimana kombinasi antara image processing dan neural network dapat menjadi solusi yang efisien dan akurat dalam mendeteksi cacat kain secara otomatis. Sistem ini menjawab kebutuhan industri tekstil akan kontrol kualitas yang lebih konsisten, cepat, dan hemat biaya.

Lebih jauh lagi, pendekatan ini menandai pergeseran penting dari inspeksi manual menuju otomatisasi cerdas berbasis AI, yang akan menjadi tulang punggung revolusi industri tekstil di masa depan.

 

Sumber Referensi

Rajan, R., & Gopinath, S. (2018). Detection & Classification of Fabrics Defects using Image Processing and Neural Network. International Journal of Creative Research Thoughts (IJCRT), Vol. 6, Issue 2.

Selengkapnya
Deteksi Cacat Kain Otomatis dengan Kecerdasan Buatan

Manufaktur Cerdas

Solusi Cerdas untuk Industri Manufaktur Modern

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025


Pendahuluan

Di tengah pesatnya pertumbuhan industri manufaktur, menjaga kualitas produk tetap menjadi prioritas utama. Inspeksi manual yang selama ini menjadi andalan mulai ditinggalkan karena keterbatasannya dalam hal kecepatan, konsistensi, dan biaya. Kelelahan operator, inkonsistensi antar-inspektur, dan kerumitan dalam pelatihan membuat proses manual semakin tidak efisien, terutama dalam lini produksi berskala besar.

Di sinilah Active Learning hadir sebagai solusi mutakhir yang tidak hanya mengurangi beban kerja manusia, tetapi juga meningkatkan efisiensi dan akurasi proses inspeksi visual otomatis. Paper ini membahas strategi active learning yang diimplementasikan dalam sistem inspeksi visual otomatis berbasis machine learning, khususnya pada produk manufaktur seperti alat cukur produksi Philips Consumer Lifestyle BV.

 

Konsep Dasar Active Learning dalam Inspeksi Visual

Active learning adalah salah satu cabang machine learning yang memungkinkan sistem belajar lebih efisien dengan memilih data yang paling informatif untuk dilabeli. Dalam konteks inspeksi produk, metode ini sangat relevan karena:

  • Volume data besar, namun hanya sebagian kecil yang benar-benar berguna untuk meningkatkan performa model.
  • Keterbatasan sumber daya manusia dalam proses pelabelan, yang membutuhkan waktu dan tenaga.

Dengan pendekatan ini, sistem hanya meminta label pada data yang tidak pasti atau berpotensi meningkatkan akurasi model, sehingga menghemat waktu dan biaya pelabelan.

 

Studi Kasus: Inspeksi Visual Produk Philips

Latar Belakang

Penelitian ini berfokus pada inspeksi kualitas cetakan logo pada alat cukur produksi Philips. Produk-produk ini melalui proses pad printing yang memungkinkan terjadinya cacat seperti:

  1. Double Printing (Pencetakan Ganda)
  2. Interrupted Printing (Pencetakan Terputus)

Operator biasanya melakukan inspeksi manual untuk memisahkan produk cacat dari yang layak jual. Dengan produksi harian dalam jumlah besar, kebutuhan untuk mengotomatisasi proses inspeksi sangat mendesak.

Dataset

Dataset yang digunakan mencakup 3.518 gambar alat cukur yang diklasifikasikan ke dalam tiga kategori:

  • Good Printing (Cetakan Sempurna)
  • Double Printing
  • Interrupted Printing

Data ini menjadi dasar dalam membangun dan menguji model machine learning.

 

Metodologi yang Digunakan

Pendekatan Multiclass Classification

Peneliti memformulasikan masalah sebagai tugas klasifikasi multiclass, dengan tiga kelas yang telah disebutkan. Model dilatih untuk membedakan ketiga kelas ini, memastikan deteksi cacat dapat dilakukan secara otomatis.

Ekstraksi Fitur

Penggunaan ResNet-18 sebagai model pretrained deep learning menjadi kunci utama dalam ekstraksi fitur. Fitur yang diambil dari lapisan average pooling berjumlah 512, yang kemudian diseleksi menggunakan teknik Mutual Information untuk mencegah overfitting.

Strategi Active Learning

Peneliti membandingkan tiga pendekatan utama:

  1. Stream-Based Sampling
    Model memilih data berdasarkan tingkat ketidakpastian yang diukur pada setiap instance yang masuk secara real-time.
  2. Pool-Based Sampling
    Model memilih data dari kumpulan data yang ada, memprioritaskan data yang paling tidak pasti.
  3. Query by Committee
    Pendekatan ini melibatkan beberapa model berbeda (Gaussian Naïve Bayes, CART, SVM, MLP, kNN) yang membentuk "komite". Data dipilih jika terdapat ketidaksetujuan tinggi antar model.

Evaluasi Kinerja

Kinerja model diukur menggunakan AUC ROC (Area Under the Receiver Operating Characteristic Curve), yang populer karena kemampuannya mengukur performa klasifikasi secara threshold-independent.

 

Hasil dan Analisis Data

Performa Model

  • MLP (Multi-layer Perceptron) mencatat performa terbaik di hampir semua skenario, baik pada pool-based maupun stream-based sampling.
    AUC ROC rata-rata mencapai 98-99% di sebagian besar pengujian.
  • SVM (Support Vector Machine) berada di posisi ketiga terbaik setelah MLP dan query-by-committee, dengan hasil AUC ROC stabil di kisaran 95-97%.
  • Query-by-Committee menampilkan performa kompetitif, hampir setara dengan MLP namun masih lebih rendah dalam beberapa skenario.

Signifikansi Statistik

Uji Wilcoxon signed-rank menunjukkan bahwa:

  • Perbedaan performa antara stream-based dan pool-based tidak signifikan.
  • Strategi query-by-committee secara statistik memberikan hasil signifikan dibanding metode lain, kecuali saat dibandingkan langsung dengan MLP.

Efisiensi Labeling

Active learning secara keseluruhan mampu mengurangi kebutuhan pelabelan data tanpa mengorbankan akurasi model. Ini berarti penghematan waktu dan sumber daya manusia yang signifikan di lini produksi.

 

Kritik dan Pembahasan Tambahan

Kelebihan Penelitian

  1. Praktikal dan Realistis
    Fokus pada kasus nyata dari industri (Philips) menjadikan penelitian ini sangat aplikatif.
  2. Komparasi Menyeluruh
    Penelitian ini mengulas berbagai strategi active learning, memungkinkan pembaca mendapatkan gambaran komprehensif tentang kelebihan dan kekurangannya.

Keterbatasan Penelitian

  1. Generalisasi
    Studi ini fokus pada satu jenis produk (alat cukur). Pengujian lebih luas pada tipe produk lain diperlukan untuk menguji skalabilitas metode.
  2. Ketergantungan pada Data Gambar
    Sistem ini sangat bergantung pada kualitas gambar. Kondisi pencahayaan dan noise gambar dapat memengaruhi performa sistem.

 

Perbandingan dengan Penelitian Lain

Jika dibandingkan dengan penelitian lain seperti Gobert et al. (2018) yang menggunakan 3D convolutional filters untuk mendeteksi cacat pada manufaktur aditif, pendekatan active learning di sini lebih hemat sumber daya karena hanya meminta label pada data yang penting. Selain itu, penelitian ini juga sejalan dengan konsep Smart Manufacturing yang diusung oleh industri 4.0.

 

Implikasi Praktis untuk Industri Manufaktur

Keuntungan Implementasi

  • Efisiensi Operasional: Mempercepat proses inspeksi hingga 40%, mengurangi ketergantungan pada operator manual.
  • Skalabilitas: Bisa diterapkan pada lini produksi yang berbeda dengan modifikasi minimal.
  • Pengurangan Biaya: Mengurangi jumlah data yang perlu dilabeli secara manual.

Contoh Implementasi di Industri

  1. Industri Elektronik
    Digunakan untuk inspeksi komponen PCB di industri semikonduktor, di mana kecepatan inspeksi krusial.
  2. Industri Otomotif
    Diterapkan dalam pengecekan cat bodi kendaraan yang rentan cacat minor yang sulit dilihat oleh mata manusia.

 

Rekomendasi Penelitian Lanjutan

  1. Data Augmentation
    Mengintegrasikan teknik augmentasi data untuk meningkatkan akurasi prediksi model tanpa menambah beban pelabelan data.
  2. Integrasi Edge Computing
    Agar sistem bisa bekerja secara real-time di lokasi produksi tanpa membutuhkan bandwidth besar.
  3. Explainable AI (XAI)
    Meningkatkan transparansi model agar keputusan deteksi cacat dapat dijelaskan secara logis kepada operator dan manajemen pabrik.

 

Kesimpulan

Penelitian "Active Learning for Automated Visual Inspection of Manufactured Products" memberikan wawasan penting tentang bagaimana active learning dapat merevolusi sistem inspeksi visual otomatis dalam industri manufaktur. Dengan memanfaatkan strategi query-by-committee dan MLP, sistem ini mampu mencapai akurasi tinggi sambil menghemat sumber daya.

Pendekatan ini tidak hanya efisien tetapi juga praktis, menawarkan solusi nyata bagi perusahaan yang ingin beradaptasi dengan tuntutan produksi modern yang semakin kompetitif dan berorientasi pada kualitas.

Selengkapnya
Solusi Cerdas untuk Industri Manufaktur Modern

Perindustrian

Revolusi Deteksi Cacat Kain:Analisis Metode Modified Local Binary Patterns (LBP)

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025


Pendahuluan

Di era industri tekstil modern, kualitas kain menjadi penentu utama nilai jual. Bahkan, cacat kecil dapat menurunkan harga jual kain hingga 45–65%. Masalah semakin kompleks ketika kecepatan produksi meningkat, sementara kemampuan manusia untuk mendeteksi cacat tetap terbatas. Di sinilah teknologi Automated Visual Inspection (AVI) berbasis pengolahan citra menjadi solusi yang mendesak.

Penelitian oleh Tajeripour et al. memperkenalkan metode deteksi cacat kain yang berbasis Modified Local Binary Patterns (LBP). Tujuannya adalah menyederhanakan proses deteksi cacat namun tetap efisien, akurat, dan mampu diimplementasikan secara online dalam proses produksi.

 

Apa itu Local Binary Patterns (LBP)?

LBP adalah metode pengolahan citra untuk analisis tekstur yang dikembangkan oleh Ojala et al. pada tahun 1990-an. Secara sederhana, LBP bekerja dengan membandingkan intensitas piksel pusat dengan piksel-piksel tetangganya dalam suatu jendela kecil, kemudian mengubah hasil perbandingan itu menjadi representasi biner.

Dalam konteks deteksi cacat kain, metode ini sangat cocok karena tekstur kain bersifat berulang dan memiliki pola periodik yang konsisten. Cacat adalah bentuk gangguan yang mengacaukan pola tersebut. LBP yang dimodifikasi dalam penelitian ini memungkinkan pendeteksian berbagai cacat, baik pada kain berpola sederhana maupun kompleks.

 

Permasalahan yang Dihadapi Industri Tekstil

Industri tekstil menghadapi tantangan besar dalam hal:

  • Kecepatan produksi tinggi, hingga 200 m/menit.
  • Ketergantungan pada operator manusia, yang hanya mampu mendeteksi 60% cacat jika kecepatan produksi melebihi 30 m/menit.
  • Variasi pola kain yang semakin rumit, seperti Jacquard dengan motif bunga atau desain kompleks lainnya.

Teknologi AVI harus mampu:

  • Menangani berbagai jenis kain, baik patterned maupun unpatterned.
  • Bekerja secara real-time dengan akurasi tinggi.

 

Kontribusi Utama Penelitian

1. Penggunaan Modified LBP untuk Deteksi Cacat

LBP klasik digunakan untuk klasifikasi tekstur, namun penelitian ini memodifikasi algoritma tersebut untuk fokus pada deteksi cacat:

  • Rotasi tidak relevan: Karena posisi gulungan kain tetap, rotasi diabaikan, sehingga digunakan jendela persegi bukan lingkaran.
  • Probabilitas kemunculan label LBP digunakan sebagai fitur utama dalam klasifikasi daerah cacat dan tidak cacat.
  • Pendekatan Multiresolusi: Menggunakan jendela dengan berbagai ukuran untuk menangkap cacat dari berbagai skala.

2. Deteksi pada Kain Berpola dan Tidak Berpola

  • Untuk kain tidak berpola, LBP diterapkan langsung pada jendela non-overlapping.
  • Pada kain berpola, digunakan jendela overlapping untuk mempertahankan konteks pola berulang.

 

Metodologi dan Implementasi

Dataset

  • Kain unpatterned seperti Twill dan Plain.
  • Kain patterned seperti Jacquard dengan pola titik, kotak, dan bintang.
  • Cacat yang diuji termasuk: double yarn, missing yarn, broken fabric, hole, oil stain, knot, netting multiple.

Langkah Kerja Algoritma

  1. Training Stage:
    • Mengambil gambar kain bebas cacat.
    • Membagi gambar menjadi jendela untuk menghitung reference feature vector.
    • Menentukan ambang batas (threshold) berdasarkan distribusi probabilitas label LBP.
  2. Testing Stage:
    • Menerapkan LBP pada jendela gambar kain yang diuji.
    • Menghitung log-likelihood ratio untuk membandingkan fitur jendela dengan reference feature vector.
    • Jika nilai lebih besar dari threshold, maka jendela dianggap cacat.

 

Hasil dan Diskusi

Akurasi Deteksi

  • Unpatterned Fabrics: Deteksi rata-rata 97% untuk cacat seperti missing yarn dan broken fabric.
  • Patterned Fabrics: Deteksi rata-rata 95% pada berbagai jenis cacat.
  • Kombinasi LBP8,3 + LBP16,5 mencapai deteksi >95% di berbagai jenis cacat.

Kecepatan dan Kompleksitas

  • Lebih cepat dibanding metode Gabor filter yang butuh banyak komputasi.
  • Implementasi online memungkinkan: Simpel, tanpa perlu transformasi kompleks seperti Fourier atau Wavelet.

 

Nilai Tambah & Opini

Kelebihan Metode

  • Efisien dan ringan secara komputasi, cocok untuk sistem online pada jalur produksi.
  • Multiresolusi meningkatkan akurasi dalam mendeteksi cacat kecil maupun besar.
  • Gray-scale invariant, tidak terpengaruh perubahan pencahayaan.

Kritik & Batasan

  • Keterbatasan pada pola non-periodik: Sistem sangat bergantung pada pola berulang.
  • Resolusi pola cacat rendah: Walaupun cacat terdeteksi, pola yang dihasilkan kurang detail dibanding metode seperti Gabor.

Perbandingan dengan Penelitian Lain

  • Ngan et al. (2005): Menggunakan Wavelet untuk kain berpola, namun lebih berat secara komputasi.
  • Kumar & Pang (2002): Gabor filters akurat, tetapi lambat.
  • Tajeripour et al. menghadirkan solusi di tengah—cukup akurat, lebih cepat, mudah diimplementasikan.

 

Implikasi Praktis di Industri

Manfaat Langsung

  • Hemat biaya: Tidak perlu tenaga kerja manusia dalam jumlah besar untuk inspeksi.
  • Meningkatkan kualitas produksi: Deteksi lebih akurat dan konsisten.
  • Fleksibel diterapkan di berbagai lini produksi tekstil.

Tren Industri

  • Integrasi dengan sistem IoT: Data dari deteksi cacat dapat langsung masuk ke sistem monitoring produksi.
  • Edge Computing: Algoritma ringan LBP cocok diimplementasikan pada perangkat edge, mengurangi kebutuhan pengolahan di server pusat.

 

Studi Kasus Industri Nyata

Di industri tekstil India dan China, penerapan inspeksi visual otomatis menjadi tren yang tak terhindarkan. Dengan ribuan meter kain diproduksi tiap jam, penerapan sistem berbasis Modified LBP seperti ini bisa menghemat jutaan rupiah setiap harinya karena mengurangi tingkat produk cacat yang lolos inspeksi.

 

Rekomendasi Penelitian Selanjutnya

  • Kombinasi dengan Deep Learning: Menggabungkan keunggulan LBP dalam ekstraksi fitur dengan klasifikasi CNN untuk meningkatkan akurasi.
  • Penerapan pada bahan non-tekstil: Kayu, plastik, bahkan kulit sintetis yang juga memiliki tekstur berulang.

 

Kesimpulan

Penelitian Tajeripour et al. berhasil menunjukkan bahwa Modified LBP adalah metode sederhana namun efektif untuk deteksi cacat kain secara otomatis. Pendekatan ini menawarkan solusi praktis dengan akurasi tinggi dan komputasi rendah, ideal untuk industri manufaktur tekstil modern yang membutuhkan sistem inspeksi real-time.

 

Sumber Artikel

Tajeripour, F., Kabir, E., & Soroushmehr, S. M. R. (2008). A novel method for fabric defect detection using modified local binary patterns. EURASIP Journal on Advances in Signal Processing, 2008(1), 783898.

Selengkapnya
Revolusi Deteksi Cacat Kain:Analisis Metode Modified Local Binary Patterns (LBP)

Industri Manufaktur

Deteksi Cacat Visual Otomatis pada Permukaan Baja Datar – Kajian Teknologi dan Tren Masa Depan

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025


Pendahuluan

Dalam dunia industri manufaktur baja modern, kualitas permukaan produk menjadi prioritas utama. Flat steel atau baja datar mencakup lebih dari 65% dari seluruh produk industri baja. Material ini memainkan peran krusial dalam berbagai sektor industri seperti otomotif, kedirgantaraan, konstruksi, hingga mesin berat. Permasalahan kualitas pada baja datar, khususnya cacat permukaan, tidak hanya merugikan dari sisi ekonomi, tetapi juga mengancam reputasi produsen.

Paper Automated Visual Defect Detection for Flat Steel Surface: A Survey” yang disusun oleh Qiwu Luo dkk. dan diterbitkan di IEEE Transactions on Instrumentation and Measurement, mengulas secara komprehensif teknologi deteksi cacat visual otomatis berbasis visi komputer yang digunakan dalam industri baja datar. Kajian ini mencakup lebih dari 120 publikasi dalam dua dekade terakhir dan mengkategorikan pendekatan deteksi cacat ke dalam empat kelompok besar: statistik, spektral, berbasis model, dan pembelajaran mesin.

Urgensi Deteksi Cacat Permukaan Otomatis

Dalam proses produksi baja datar—baik itu slab hasil continuous casting, hot-rolled steel, maupun cold-rolled steel—cacat permukaan seperti goresan, lubang, retakan, hingga perubahan warna menjadi perhatian utama. Cacat ini tidak hanya mengurangi kualitas estetika, tetapi juga berdampak pada kekuatan struktural dan keselamatan pengguna akhir.

Proses deteksi cacat secara manual oleh inspektur manusia terbukti tidak efisien karena keterbatasan kecepatan, kelelahan, dan subjektivitas. Oleh karena itu, sistem Automated Visual Inspection (AVI) menjadi solusi standar dalam pabrik baja modern.

Tantangan dalam Implementasi Sistem Deteksi Cacat Otomatis

Meskipun sudah menjadi standar industri, penerapan AVI masih menghadapi tantangan signifikan, di antaranya:

  • Lingkungan pencitraan yang buruk, seperti suhu tinggi, kabut, percikan air, pencahayaan tidak merata, dan getaran yang menyebabkan noise pada citra.
  • Aliran data gambar yang sangat besar, mencapai 2.56 Gbps pada pengukuran kualitas permukaan secara real-time, membutuhkan algoritma yang sangat efisien dan akurat.
  • Variasi intra-class yang besar dan perbedaan antar kelas yang kecil, yang menyulitkan pemisahan cacat nyata dari anomali permukaan biasa.

Taksonomi Metode Deteksi Cacat

1. Pendekatan Statistik

Metode statistik fokus pada analisis distribusi intensitas piksel untuk mendeteksi anomali permukaan. Beberapa teknik utama antara lain:

  • Thresholding Adaptif, seperti yang digunakan oleh Djukic et al., yang memanfaatkan distribusi probabilitas intensitas piksel.
  • Clustering, seperti pendekatan Superpixel yang memungkinkan deteksi cacat periodik meskipun ada gangguan noise.
  • Edge Detection menggunakan operator Sobel dan Kirsch, meski metode ini sensitif terhadap pencahayaan yang tidak merata.

Kelebihan metode ini adalah kesederhanaan implementasi dan efisiensi komputasi. Namun, kelemahannya meliputi sensitivitas terhadap noise dan kurangnya kemampuan mendeteksi cacat dengan kontras rendah.

2. Pendekatan Spektral

Teknik spektral seperti Transformasi Fourier, Filter Gabor, dan Transformasi Wavelet digunakan untuk mengidentifikasi tekstur kompleks dan cacat halus. Transformasi ini sangat efektif dalam mendeteksi pola periodik, namun membutuhkan komputasi tinggi.

Contoh nyata penerapan metode ini adalah pada deteksi cacat berupa goresan longitudinal pada cold-rolled steel yang seringkali memiliki tekstur yang kompleks dan kontras rendah.

3. Pendekatan Berbasis Model

Metode ini menggunakan representasi matematis dari struktur gambar, seperti Model Markov Random Field (MRF) dan Active Contour Model. Keunggulan metode ini adalah kemampuannya untuk menyesuaikan dengan bentuk cacat yang beragam. Akan tetapi, kompleksitas komputasinya tinggi dan kurang cocok untuk pemrosesan real-time.

4. Pembelajaran Mesin (Machine Learning)

Metode berbasis pembelajaran mesin, khususnya Deep Learning, telah menjadi tren utama dalam lima tahun terakhir. Model CNN (Convolutional Neural Network) memungkinkan deteksi dan klasifikasi cacat dengan akurasi tinggi.

Beberapa studi menunjukkan bahwa algoritma pembelajaran mendalam dapat mengatasi tantangan noise dan variasi pencahayaan, asalkan didukung oleh data pelatihan yang memadai. Namun, pembelajaran mesin memerlukan dataset besar dan perangkat keras komputasi tinggi.

Studi Kasus Implementasi Deteksi Cacat

Kasus 1: Pabrik Baja di China

Sebuah pabrik baja besar di China menerapkan sistem AVI berbasis CNN untuk cold-rolled steel. Hasilnya, akurasi deteksi cacat meningkat hingga 98%, dengan penurunan waktu pemeriksaan sebesar 30% dibandingkan metode konvensional.

Kasus 2: Industri Otomotif Eropa

Perusahaan otomotif ternama di Eropa mengintegrasikan AVI berbasis spektral untuk mendeteksi goresan halus pada panel baja. Ini memastikan bahwa setiap komponen memenuhi standar keselamatan sebelum dirakit menjadi kendaraan.

Analisis Kritis dan Perbandingan dengan Penelitian Lain

Dibandingkan dengan survei sebelumnya seperti yang dilakukan oleh Youkachen et al., paper ini lebih fokus pada produk flat steel daripada mencakup semua jenis produk baja. Kelebihan utama paper ini adalah klasifikasinya yang jelas atas metode-metode deteksi cacat, serta ulasan mendalam tentang kekuatan dan kelemahan masing-masing pendekatan.

Namun, paper ini masih bersifat teoretis tanpa evaluasi praktis dari sistem AVI yang tersedia di pasaran. Beberapa rekomendasi untuk penelitian lanjutan meliputi:

  • Pengembangan dataset standar industri untuk benchmark sistem AVI.
  • Penelitian lebih dalam pada model hybrid yang menggabungkan statistik klasik dan pembelajaran mesin.
  • Peningkatan interpretabilitas model deep learning agar lebih mudah diadopsi oleh praktisi industri.

Tren Masa Depan dan Implikasi Praktis

Dengan pesatnya perkembangan teknologi Edge AI, sistem AVI masa depan diprediksi akan lebih ringkas dan hemat daya, memungkinkan pemrosesan data langsung di pabrik tanpa perlu server besar. Selain itu, penerapan Augmented Reality (AR) dapat memberikan feedback visual langsung kepada operator pabrik mengenai kualitas produk.

Sementara itu, integrasi AVI dengan Internet of Things (IoT) membuka peluang pengawasan kualitas secara end-to-end, mulai dari proses produksi hingga distribusi.

Kesimpulan

Paper "Automated Visual Defect Detection for Flat Steel Surface: A Survey" memberikan wawasan yang komprehensif dan sistematis mengenai berbagai pendekatan deteksi cacat permukaan baja datar. Baik dari sisi teori maupun perkembangan teknologi terkini, paper ini layak menjadi referensi utama bagi peneliti dan praktisi industri.

Namun, agar teknologi ini semakin relevan dalam aplikasi nyata, penelitian ke depan perlu lebih menekankan pada sistem real-time yang efisien, mudah dioperasikan, dan hemat biaya. Di sisi lain, keterlibatan multidisiplin antara ilmuwan komputer, ahli material, dan insinyur manufaktur menjadi kunci dalam mengembangkan solusi deteksi cacat permukaan yang inovatif dan aplikatif.

 

Sumber Artikel:

Luo, Q., Fang, X., Liu, L., Yang, C., & Sun, Y. (2019). Automated visual defect detection for flat steel surface: A survey. IEEE Transactions on Instrumentation and Measurement. (Accepted for future publication).

Selengkapnya
Deteksi Cacat Visual Otomatis pada Permukaan Baja Datar – Kajian Teknologi dan Tren Masa Depan

Perindustrian

Inovasi Identifikasi Cacat Kayu Otomatis Berbasis Kecerdasan Buatan

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025


Pendahuluan

Dalam industri pengolahan kayu, kualitas produk akhir sangat ditentukan oleh ketelitian dalam proses inspeksi bahan baku, khususnya dalam mengidentifikasi cacat pada permukaan kayu. Paper berjudul "A Review of the Automated Timber Defect Identification Approach", karya Teo Hong Chun dkk., yang diterbitkan di International Journal of Electrical and Computer Engineering (IJECE), Vol. 13 No. 2, April 2023, menyajikan ulasan komprehensif mengenai pendekatan identifikasi cacat kayu otomatis berbasis Artificial Intelligence (AI).

Secara umum, paper ini menyoroti bagaimana teknologi Automated Vision Inspection (AVI) yang dikombinasikan dengan Machine Learning (ML) dan Deep Learning (DL) mampu meningkatkan akurasi dan efisiensi dalam proses deteksi dan klasifikasi cacat kayu. Dalam resensi ini, penulis mengupas isi paper, memperkaya dengan analisis mendalam, studi kasus, serta refleksi atas implementasinya di industri.

Latar Belakang Masalah

Industri kayu menghadapi tantangan besar dalam hal pengendalian kualitas (QC). Inspeksi manual yang bergantung pada tenaga kerja manusia rentan terhadap kelelahan, subjektivitas, dan human error. Menurut penelitian, sekitar 16,1% dari hasil produksi kayu hilang akibat ketidakakuratan inspeksi manusia, dengan akurasi rata-rata hanya mencapai 68% (Teo et al., 2023).

Selain itu, faktor eksternal seperti kenaikan biaya produksi kayu yang mencapai 70% dari keseluruhan biaya produksi semakin mendorong industri untuk mengadopsi solusi berbasis teknologi demi efisiensi biaya dan peningkatan hasil produksi.

AVI: Solusi untuk Efisiensi dan Akurasi Inspeksi

Teknologi Automated Vision Inspection (AVI) adalah sistem berbasis visi komputer yang mampu melakukan akuisisi, peningkatan, segmentasi, ekstraksi, hingga klasifikasi fitur pada permukaan kayu. Komponen utama AVI meliputi kamera, sensor, pencahayaan, dan sistem pemrosesan gambar berbasis AI.

Dalam konteks deteksi cacat kayu, AVI memberikan solusi presisi tinggi terhadap permasalahan klasifikasi cacat seperti:

  • Knots (simpul): Memengaruhi kekuatan struktural kayu.
  • Cracks (retakan): Mengurangi durabilitas.
  • Decay/Rot (pelapukan/busuk): Menurunkan estetika dan kekuatan kayu.

Paper ini mencatat bahwa penggunaan AVI mampu meningkatkan akurasi deteksi cacat kayu hingga 25%, meningkatkan hasil produksi sebesar 5,3%, dan secara signifikan mengurangi ketergantungan pada operator manusia.

Pendekatan Machine Learning dan Deep Learning

Penelitian-penelitian sebelumnya menunjukkan bahwa metode ML dan DL memiliki keunggulan signifikan dalam mendeteksi cacat kayu yang kompleks.

Machine Learning

ML mengandalkan dataset berlabel untuk belajar mengenali pola cacat kayu. Beberapa teknik yang diulas dalam paper meliputi:

  • Support Vector Machine (SVM): Memiliki akurasi 75,8% dalam klasifikasi cacat kayu seperti simpul dan retakan pada kayu oak dan spruce.
  • Random Forest dan k-NN: Mencapai akurasi 81% dalam mendeteksi simpul kayu (Mohan & Venkatachalapathy, 2020).

Namun, kelemahan ML adalah ketergantungannya pada fitur buatan manusia (manual feature extraction) seperti tekstur (GLCM, LBP), yang seringkali memerlukan analisis dan penyesuaian mendalam.

Deep Learning

DL, khususnya Convolutional Neural Network (CNN), menawarkan metode otomatis dalam ekstraksi fitur dan klasifikasi. CNN terbukti:

  • Memiliki akurasi lebih tinggi dalam deteksi simpul, retakan, dan pelapukan.
  • Mampu memproses data dalam jumlah besar dengan transfer learning dan data augmentation untuk meningkatkan akurasi pada dataset terbatas.

Studi dalam paper menyebutkan bahwa model ResNet152, ketika diterapkan untuk mendeteksi cacat veneer kayu, mencapai akurasi rata-rata 80,6%. Sementara VGG-19 dan DenseNet digunakan untuk mendeteksi simpul kayu dengan akurasi mendekati 90%.

Studi Kasus Industri Kayu

Dalam industri pengolahan kayu di Skandinavia, perusahaan seperti Moelven Industrier ASA telah mengintegrasikan sistem AVI berbasis DL untuk grading kayu secara otomatis. Hasilnya, terjadi pengurangan 30% tenaga kerja manual dan peningkatan produktivitas sebesar 15%. Penerapan ini juga menunjukkan ROI (Return on Investment) dalam waktu 2 tahun.

Di Indonesia, tantangan utama adalah akses ke teknologi dan biaya investasi awal. Namun, integrasi AI dalam QC kayu di perusahaan furniture seperti IKEA Indonesia mulai mengadopsi teknologi serupa untuk menjaga standar internasional.

Kelebihan dan Kelemahan Pendekatan dalam Paper

Kelebihan:

  • Penyajian ulasan komprehensif terkait berbagai metode ML dan DL.
  • Penjelasan detail mengenai arsitektur CNN dan aplikasinya di industri kayu.
  • Analisis tren teknologi terbaru seperti transfer learning dan data augmentation.

Kelemahan:

  • Fokus penelitian sebagian besar pada deteksi simpul (knots), sementara jenis cacat lain seperti pelapukan (rot) atau stain belum banyak diulas.
  • Implementasi di industri skala kecil-menengah masih minim, sehingga kurang representatif bagi pasar berkembang.

Catatan Tambahan

Industri kayu di Asia Tenggara, termasuk Indonesia, menghadapi tantangan serupa yang diulas dalam paper, seperti keterbatasan tenaga kerja ahli dan kebutuhan peningkatan efisiensi produksi. Paper ini menjadi rujukan penting dalam mengembangkan solusi berbasis AI untuk pasar domestik.

Masa Depan AVI di Industri Kayu

Dengan semakin berkembangnya teknologi Industri 4.0, integrasi Internet of Things (IoT) dan AI membuka peluang besar bagi otomatisasi sistem grading kayu secara end-to-end. Pengembangan sistem berbasis Edge Computing juga memungkinkan pemrosesan data secara real-time di lokasi produksi tanpa ketergantungan pada infrastruktur cloud.

Kolaborasi antara akademisi dan industri diperlukan untuk mengembangkan solusi yang cost-effective, seperti low-cost CNN deployment untuk UKM pengrajin kayu.

Kesimpulan

Paper ini memberikan pandangan luas mengenai perkembangan sistem deteksi otomatis cacat kayu berbasis AVI, ML, dan DL. Meskipun sebagian besar implementasi masih terbatas pada penelitian atau perusahaan besar, potensi adopsinya di skala industri menengah dan kecil sangat besar. Dengan teknologi yang semakin murah dan sumber daya manusia yang terlatih, masa depan industri kayu berbasis AI sangat menjanjikan.

 

Sumber:

Teo, H. C., Hashim, U. R., Ahmad, S., Salahuddin, L., Choon, N. H., & Kanchymalay, K. (2023). A review of the automated timber defect identification approach. International Journal of Electrical and Computer Engineering, 13(2), 2156–2166.

Selengkapnya
Inovasi Identifikasi Cacat Kayu Otomatis Berbasis Kecerdasan Buatan

DeepLearning

Revolusi Teknologi Vision-Based dalam Deteksi dan Klasifikasi Cacat Permukaan Produk Baja

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 08 Mei 2025


Pendahuluan

Dalam era manufaktur modern, industri baja menghadapi tantangan besar untuk menjaga kualitas produk di tengah tuntutan produktivitas yang tinggi. Salah satu tantangan utama adalah menjaga mutu permukaan baja dari berbagai jenis cacat yang dapat mempengaruhi nilai jual hingga performa material tersebut. Untuk menjawab tantangan ini, teknologi deteksi berbasis visi (vision-based) telah menjadi alternatif yang menjanjikan dibandingkan inspeksi manual tradisional.

Paper yang diulas kali ini berjudul "A Survey of Vision-Based Methods for Surface Defects’ Detection and Classification in Steel Products" (Ibrahim & Tapamo, 2024), merupakan tinjauan komprehensif atas perkembangan metode vision-based dalam mendeteksi dan mengklasifikasikan cacat permukaan pada produk baja. Penelitian ini menyoroti metode statistik, spektral, segmentasi tekstur, hingga machine learning dan deep learning yang digunakan dalam mendukung inspeksi otomatis.

Kontribusi Utama Penelitian

Penelitian ini memberikan empat kontribusi utama:

  1. Tinjauan mendalam atas lebih dari 200 penelitian mengenai metode deteksi dan klasifikasi cacat permukaan baja.
  2. Analisis evaluasi performa dari berbagai algoritma deteksi dan klasifikasi terkini.
  3. Pembahasan metrik evaluasi yang digunakan dalam sistem inspeksi permukaan baja.
  4. Sorotan kelebihan dan kekurangan dari metode-metode yang ada, memberikan peta jalan bagi penelitian masa depan.

 

Ragam Cacat Permukaan Baja: Masalah yang Kompleks dan Variatif

Permukaan baja kerap mengalami berbagai jenis cacat selama proses produksi, mulai dari goresan (scratches), karat (scales), retakan (cracks), hingga lubang kecil (pits). Masing-masing cacat ini memiliki karakteristik unik yang membuat proses klasifikasi menjadi kompleks. Dalam produksi baja canai panas (hot-rolled) dan dingin (cold-rolled), cacat permukaan seperti crazing, scarring, dan inclusions menjadi permasalahan utama yang harus segera dideteksi agar tidak merugikan proses produksi berikutnya.

Penelitian menunjukkan bahwa tidak ada standar universal untuk mendefinisikan cacat-cacat ini secara sistematis. Variasi produk dan proses menyebabkan metode klasifikasi cacat menjadi semakin kompleks dan menantang.

 

Metodologi Deteksi dan Klasifikasi: Dari Teknik Tradisional hingga Deep Learning

1. Metode Statistik

Metode ini meliputi autocorrelation, thresholding, co-occurrence matrix (GLCM), dan local binary patterns (LBP). GLCM terbukti efektif dalam menganalisis tekstur, tetapi boros waktu komputasi dan memerlukan ruang penyimpanan besar. Sementara LBP populer karena sederhana, namun sensitif terhadap noise dan skala perubahan gambar.

2. Metode Spektral

Termasuk Fourier Transform dan Wavelet Transform. Wavelet memberikan resolusi multiskala dan akurasi tinggi (83-97%), namun sulit memilih basis yang tepat. Gabor filter unggul dalam mendeteksi pola tekstur namun butuh parameter filter yang akurat.

Studi Kasus:

  • Penggunaan Gabor filter oleh Medina et al. (2017) di pabrik pemotongan baja flat menghasilkan tingkat deteksi hingga 96,61%.
  • Metode multifraktal Yazdchi et al. (2016) mencapai akurasi 97,90% dalam mendeteksi cacat cold strips.

3. Segmentasi Tekstur

Model seperti Markov Random Field (MRF), Autoregressive (AR), Weibull, hingga Active Contour. Model MRF memberikan akurasi tinggi (91,36%), namun kurang cocok untuk tekstur global.

4. Machine Learning dan Deep Learning

Teknik supervised seperti Artificial Neural Networks (ANN) dan Support Vector Machine (SVM) menjadi tulang punggung sistem klasifikasi modern. Deep learning melalui Convolutional Neural Networks (CNN), YOLO, dan GAN mendominasi penelitian terbaru, menawarkan akurasi tinggi hingga 99% pada dataset NEU dan Xsteel.

Studi Kasus:

  • Penggunaan YOLOv4 yang dimodifikasi mencapai rata-rata akurasi 92,50% dalam mendeteksi cacat.
  • Transfer learning dengan MobileNet, ResNet, dan VGG memperlihatkan hasil yang sangat menjanjikan dalam klasifikasi cacat baja.

 

Evaluasi Metode dan Tantangan yang Dihadapi

Metode yang digunakan dievaluasi menggunakan metrik seperti akurasi, presisi, recall, dan F1-score. Sebagai contoh, model CNN yang digunakan oleh Gao et al. (2021) mencapai akurasi 95,63% dengan tantangan utama pada kebutuhan dataset yang sangat besar.

Namun, tantangan tetap ada:

  • Skala Dataset: Deep learning membutuhkan data label dalam jumlah besar, yang dalam industri baja bisa mahal dan sulit dikumpulkan.
  • Generalizability: Model yang baik pada benchmark dataset bisa gagal dalam aplikasi dunia nyata karena noise atau tekstur tak terduga.
  • Waktu Komputasi: Algoritma seperti sparse coding memberikan akurasi tinggi, namun waktu komputasi yang lama menghalangi aplikasi real-time.

 

Kritik dan Analisis Tambahan

Kelebihan Penelitian

Penelitian Ibrahim dan Tapamo (2024) unggul dalam memberikan cakupan menyeluruh terhadap metode deteksi vision-based, dari teknik dasar hingga algoritma deep learning. Penulis mengkategorikan metode secara sistematis dan menyoroti tren evolusi pendekatan dari waktu ke waktu.

Kelemahan

Namun, pembahasan terkait integrasi sistem ke dalam lini produksi nyata masih terbatas. Bagaimana sistem ini diimplementasikan secara praktis, baik dari segi hardware (kamera, pencahayaan) maupun software, tidak dibahas secara mendalam.

Perbandingan dengan Studi Sebelumnya

Penelitian ini menguatkan temuan dari Luo et al. (2021) tentang pentingnya model deep learning berbasis CNN dalam meningkatkan akurasi klasifikasi cacat. Namun, Ibrahim dan Tapamo melangkah lebih jauh dengan menelaah sistem semi-supervised dan unsupervised yang masih jarang digunakan di industri baja.

 

Arah Penelitian Masa Depan dan Implikasi Praktis

1. Hybrid Approach

Menggabungkan deep learning dengan rule-based system dapat meningkatkan akurasi tanpa ketergantungan pada data label yang besar.

2. Edge Computing

Implementasi sistem deteksi cacat secara real-time di lini produksi memerlukan optimasi komputasi, yang bisa dijawab melalui edge computing.

3. Explainable AI (XAI)

Industri baja membutuhkan sistem yang tidak hanya akurat, tetapi juga transparan. Pengembangan model XAI akan membantu insinyur memahami keputusan sistem dan meningkatkan kepercayaan industri.

 

Kesimpulan

Penelitian "A Survey of Vision-Based Methods for Surface Defects’ Detection and Classification in Steel Products" oleh Ibrahim dan Tapamo (2024) merupakan referensi penting dalam bidang quality control industri baja. Dengan mengulas lebih dari 200 penelitian dan menawarkan analisis mendalam atas metode terkini, studi ini memberikan fondasi kuat bagi penelitian dan pengembangan sistem inspeksi otomatis berbasis vision.

Namun, untuk adopsi industri secara masif, tantangan seperti kebutuhan data besar, waktu komputasi, dan integrasi sistem tetap harus diatasi. Penelitian lanjutan sebaiknya berfokus pada pengembangan metode hybrid, penggunaan edge computing, dan pendekatan XAI yang dapat memberikan kejelasan dan efisiensi dalam pengambilan keputusan.

 

Sumber Referensi

Ibrahim, Y., & Tapamo, J. (2024). A survey of vision-based methods for surface defects’ detection and classification in steel products. Informatics, 11(2), 25.

Selengkapnya
Revolusi Teknologi Vision-Based dalam Deteksi dan Klasifikasi Cacat Permukaan Produk Baja
« First Previous page 411 of 1.298 Next Last »