Meninggalkan MTBF: Physics-of-Failure sebagai Pilar Baru Rekayasa Keandalan Elektronik

Dipublikasikan oleh Dewi Sulistiowati

11 April 2025, 08.38

Freepik.com

Pendahuluan: Kegagalan Prediksi Keandalan di Era Modern

Di tengah kemajuan teknologi dan miniaturisasi komponen elektronik, metode klasik seperti MIL-HDBK-217 semakin dipertanyakan efektivitasnya. Artikel karya Zoran Mati dan Vlado Sruk ini menyoroti perlunya perubahan paradigma menuju pendekatan Physics-of-Failure (PoF) sebagai alternatif berbasis mekanisme kegagalan nyata, bukan asumsi statistik belaka.

Mengapa Pendekatan Klasik Dianggap Usang?

Keterbatasan utama dari metode klasik:

  • Asumsi laju kegagalan konstan (constant failure rate).
  • Data tak terbarukan, tidak sesuai dengan teknologi baru.
  • Mengabaikan perbedaan vendor, proses produksi, dan lingkungan operasional.
  • Reliabilitas produk hanya diuji di akhir siklus pengembangan.

Contoh nyata: komponen plastik encapsulated (PEMs) yang ditolak untuk aplikasi militer meskipun data lapangan menunjukkan kegagalan jauh lebih rendah dari prediksi MIL-HDBK-217.

Physics-of-Failure: Apa Itu dan Mengapa Lebih Akurat?

PoF berangkat dari prinsip bahwa kegagalan komponen terjadi akibat akumulasi kerusakan yang melampaui ketahanan fisik material. Pendekatan ini mempertimbangkan:

  • Lingkungan operasi: suhu, getaran, kelembaban.
  • Desain dan material: struktur mikro, sambungan solder, lapisan pelindung.
  • Proses manufaktur: ketidaksesuaian material atau teknik produksi.

Dengan PoF, insinyur tidak hanya tahu kapan komponen gagal, tetapi juga mengapa dan bagaimana mencegahnya sejak awal desain.

Empat Langkah Utama Prosedur PoF

  1. Identifikasi Lingkungan Operasional:
    Data suhu, tekanan, kelembaban dikumpulkan dari profil misi nyata.
  2. Penentuan Triad Kegagalan (lokasi, mode, mekanisme):
    Contoh: solder joint retak akibat siklus termal → mode: retak → mekanisme: thermal fatigue.
  3. Analisis Faktor Kontributor Kegagalan:
    Misalnya, getaran resonan memperparah mikro retakan.
  4. Pemilihan Model Matematis:
    Gunakan model seperti Arrhenius untuk difusi, Coffin-Manson untuk fatigue, dan tetapkan batas validitas model.

Kelebihan Strategis Pendekatan PoF

1. Bandingkan Kandidat Desain Sejak Awal

  • Memungkinkan pemilihan desain yang lebih efisien dan hemat biaya.
  • Contoh: membandingkan dua jenis IC packaging dalam lingkungan ekstrem suhu tinggi.

2. Peringatan Dini terhadap Masalah Desain/Proses

  • Tidak perlu menunggu siklus “test-analyze-fix” (TAF) berkali-kali.
  • Mengurangi waktu pengembangan dan mempercepat ke pasar.

3. Prediksi Lebih Realistis

  • Menghindari desain berlebihan atau terlalu konservatif.
  • Menyesuaikan strategi pemeliharaan berdasarkan kondisi aktual.

4. Estimasi Umur untuk Berbagai Profil Misi

  • Contoh: komponen elektronik pada mobil vs pesawat memiliki pola degradasi berbeda.

5. Optimasi Burn-in / Environmental Stress Screening (ESS)

  • Hindari aging yang tidak perlu akibat pengujian berlebihan.

Probabilistic Physics-of-Failure (PPoF): Masa Depan PoF

PoF klasik bersifat deterministik. Namun, kenyataan menunjukkan banyak variabel acak seperti:

  • Fluktuasi lingkungan (misal: suhu tidak selalu stabil).
  • Variasi proses manufaktur (defek mikro, ketidakkonsistenan alat).
  • Profil misi dinamis.

Solusi: Integrasikan metode probabilistik (misalnya simulasi Monte Carlo, Bayesian inference) ke dalam model PoF untuk menghasilkan prediksi berbasis distribusi probabilitas, bukan nilai tetap.

Contoh penerapan awal: Haggag et al. menerapkan PP-o-F untuk transistor deep-submicron dan interkoneksi optik dengan hasil yang menjanjikan

Perbandingan Langsung: PoF vs Pendekatan Klasik

Perbandingan antara pendekatan klasik (MIL-HDBK-217) dan Physics-of-Failure (PoF) dalam analisis keandalan menunjukkan perbedaan yang signifikan. Pendekatan klasik didasarkan pada statistik historis, yang menghasilkan akurasi prediksi yang rendah dan cenderung rata-rata. Selain itu, fleksibilitas lingkungan dalam pendekatan ini terbatas, dan penerapannya biasanya dilakukan di akhir siklus pengembangan. Di sisi lain, PoF menggunakan model fisik kegagalan, yang memberikan akurasi prediksi yang tinggi berdasarkan kondisi nyata. Pendekatan ini juga menawarkan fleksibilitas yang tinggi terhadap berbagai lingkungan dan dapat diterapkan sejak awal desain. Selain itu, PoF sangat cocok untuk teknologi baru, sementara pendekatan klasik kurang kompatibel. Meskipun pendekatan probabilistik dalam PoF masih sedang berkembang, hal ini menunjukkan potensi untuk meningkatkan analisis keandalan di masa depan.

Contoh Nyata: Elektromigrasi dan Perancangan Thermal

Dalam studi oleh Mortin et al., perbandingan antara:

  • Hazard rate konstan (pendekatan klasik)
  • vs
  • Hazard rate yang meningkat (mengikuti model elektromigrasi aktual)

menunjukkan bahwa desain berdasarkan hazard rate konstan cenderung salah arah:

  • Terlalu mahal karena over-design
  • Atau justru under-design yang berujung kegagalan dini

Kritik terhadap Pendekatan Klasik: Suara Komunitas

  • Patrick D.T. O’Connor menyebut MIL-HDBK-217 sebagai “garbage” yang harus segera ditinggalkan.
  • Pecht (1996) mencatat kelemahan metode klasik:
    • Data usang
    • Tidak membedakan antara kegagalan desain dan manufaktur
    • Asumsi laju kegagalan konstan sangat keliru
    • Model tidak spesifik terhadap vendor atau perangkat

Arah Masa Depan: Kebutuhan Akan Metodologi Baru

Dengan meningkatnya daya komputasi dan akses simulasi numerik, pendekatan probabilistik berbasis PoF akan:

  • Mengisi celah antara teori dan kenyataan operasional
  • Meningkatkan akurasi prediksi reliabilitas
  • Mendukung desain multi-lingkungan secara global

Kesimpulan: Saatnya Berubah

Physics-of-Failure bukan sekadar teknik, melainkan paradigma baru. Dengan mendasari keandalan pada realitas fisik dan memanfaatkan pendekatan probabilistik, PoF memberikan jalan menuju desain sistem elektronik yang lebih tahan lama, hemat biaya, dan unggul secara kompetitif.

Meskipun pendekatan klasik memiliki nilai sebagai titik awal atau referensi historis, PoF dan PPoF akan menjadi tulang punggung rekayasa keandalan generasi berikutnya.

Sumber artikel : Zoran Mati, Vlado Sruk. The Physics-of-Failure Approach in Reliability Engineering, Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces, June 23–26, 2008, Cavtat, Croatia. IEEE. DOI: 10.1109/ITI.2008.4588504.