Menembus Batas Prediksi Umur Elektronik: Metode Modifikasi Physics-of-Failure untuk Komponen Kritis

Dipublikasikan oleh Dewi Sulistiowati

11 April 2025, 14.15

Freepik.com

Latar Belakang: Kenapa Prediksi Keandalan Gagal di Lapangan?

Reliabilitas komponen elektronik dalam sistem industri kritikal seperti nuklir, pertahanan, dan otomotif bukan hanya soal "panjang umur", tapi menyangkut keselamatan, biaya, dan efisiensi operasional. Namun, pendekatan tradisional seperti MIL-HDBK-217F, Telcordia, dan CNET kerap kali tidak sesuai dengan kondisi lapangan, karena:

  • Berdasar pada data historis umum, bukan data spesifik.
  • Menggunakan model eksponensial dengan asumsi constant failure rate (CFR), yang tidak mencerminkan mekanisme kerusakan nyata seperti kelelahan, radiasi, atau degradasi termal.

Untuk menjawab tantangan ini, Adithya Thaduri mengembangkan pendekatan Physics-of-Failure (PoF) modifikasi, yang menggabungkan data eksperimen aktual, model degradasi berbasis fisika, dan pendekatan statistik canggih.

Komponen yang Diteliti & Konteks Industri

Penelitian ini fokus pada 6 jenis komponen elektronik kritis yang sering digunakan dalam sistem keselamatan industri:

  • Optocoupler (4N36) – teknologi GaAs
  • Comparator (LM311) – JFET Op-Amp
  • Voltage Follower (OP07) – CMOS Op-Amp
  • Instrumentation Amplifier (AD620) – CMOS Op-Amp
  • BJT Transistor (2N2222) – BJT
  • Constant Fraction Discriminator (CFD2004) – BJT-based safety-critical component

Komponen ini diuji dalam konteks pengendali sinyal digital untuk sistem proteksi, seperti pada reaktor nuklir dan sistem kendali militer.

Metodologi: Modifikasi Physics-of-Failure + Model Statistik

Tahapan Utama:

  1. Identifikasi mekanisme kegagalan dominan berdasarkan literatur dan pengujian (mis. degradasi LED, electromigration, junction degradation).
  2. Desain eksperimen dua tahap (DOE) untuk menentukan level stres dominan secara efisien.
  3. Pengujian akselerasi (Accelerated Testing) dengan kombinasi tegangan, suhu, radiasi.
  4. Model degradasi menggunakan:
    • Response Surface Regression (RSR)
    • Support Vector Machine (SVM) dengan kernel RBF dan algoritma SMO.
  5. Kalkulasi time-to-failure (TTF) berdasarkan parameter degradasi (seperti penurunan Vout atau CTR).
  6. Validasi & rekomendasi peningkatan reliabilitas, termasuk desain fisik dan proses fabrikasi.

Studi Kasus: Hasil Nyata dan Model Perhitungan

Dalam studi kasus ini, kita menganalisis berbagai komponen elektronik dan bagaimana mereka terpengaruh oleh stres lingkungan seperti suhu, arus, dan radiasi. Setiap komponen memiliki nilai waktu hingga kegagalan (TTF) yang berbeda, yang menunjukkan seberapa lama mereka dapat beroperasi sebelum mengalami kerusakan. Misalnya, optocoupler 4N36 dapat bertahan antara 24.750 hingga 27.864 jam pada suhu 90°C dan arus 90mA, tetapi untuk meningkatkan keandalannya, disarankan untuk menurunkan suhu dan arus. 

Komponen lain, seperti LM311 comparator, terpapar radiasi 10KGy dan suhu 90°C, dengan TTF yang sangat tinggi mencapai 58,54 juta jam. Solusi untuk komponen ini adalah menggunakan teknik radiasi-harden untuk meningkatkan ketahanannya. 

Model degradasi untuk komponen CMOS dan BJT/JFET dijelaskan dengan persamaan matematis yang mempertimbangkan berbagai faktor seperti resistansi, suhu, dan waktu. Dengan memahami faktor-faktor ini, kita dapat merancang solusi perbaikan yang lebih efektif, seperti optimasi fabrikasi atau penggunaan pendinginan untuk komponen yang lebih sensitif terhadap radiasi dan suhu tinggi.

Keunggulan Utama Pendekatan Ini

🔍 Lebih Akurat

  • Mampu mengestimasi waktu kegagalan sesuai mekanisme degradasi aktual.
  • Tidak bergantung pada asumsi CFR yang tidak realistis untuk sistem modern.

🔧 Fleksibel & Aplikatif

  • Bisa diterapkan di berbagai teknologi IC: CMOS, BJT, JFET, GaAs.
  • Cocok untuk komponen dengan minim data pabrikan.

💡 Berbasis Ilmu & Data

  • Menggabungkan ilmu fisika, statistik, dan teknik untuk hasil prediksi yang andal.
  • Dapat diterapkan di sistem pengujian nyata dan mendukung pengambilan keputusan desain.

Kritik & Potensi Perkembangan

Tantangan:

  • Butuh eksperimen laboratorium intensif.
  • Tidak semua komponen memiliki data SEM, layout wafer, atau dokumentasi produsen.
  • Kompleksitas model SVM memerlukan tuning parameter yang tepat.

Potensi Lanjutan:

  • Integrasi dengan digital twin dan sistem monitoring real-time.
  • Otomatisasi model dalam sistem eMaintenance berbasis AI.
  • Pengembangan tools berbasis cloud untuk akses industri skala menengah dan kecil.

Relevansi Industri & Edukasi

Industri Nuklir, Dirgantara, Medis, Otomotif dapat mengaplikasikan model ini untuk:

  • Menetapkan interval maintenance optimal
  • Menyusun strategi penggantian komponen berbasis data
  • Mengurangi biaya jaminan dan downtime akibat prediksi yang meleset

Platform edukasi teknik dapat menjadikan ini:

  • Modul lanjutan “Reliability Engineering”
  • Studi kasus di bootcamp prediksi kerusakan
  • Referensi simulasi AI untuk prediksi umur pakai

Kesimpulan: Model PoF Modifikasi, Masa Depan Prediksi Keandalan?

Pendekatan yang dibangun Adithya Thaduri dalam disertasinya memberikan paradigma baru:

  • Bukan hanya menilai kemungkinan rusak, tapi mengapa dan kapan rusak.
  • Tidak hanya berdasarkan standar lama, tapi berlandaskan fisika, data, dan pembelajaran mesin.

Jika keandalan produk adalah kunci masa depan industri elektronik, maka metode ini adalah pintunya.

Referensi : Thaduri, Adithya. Physics-of-Failure Based Performance Modeling of Critical Electronic Components. Doctoral Thesis, Luleå University of Technology, 2013.