Teknik Elektro dan Informatika

Apa itu Voltmeter?

Dipublikasikan oleh Nadia Pratiwi pada 27 Mei 2024


Voltmeter adalah alat ukur yang digunakan untuk mengukur beda potensial atau tegangan listrik dari dua titik potensial listrik. Pada peralatan elektronik, voltmeter digunakan sebagai pengawasan nilai tegangan kerja. Voltmeter tersusun atas beberapa bagian yaitu terminal positif dan negatif, batas ukur, setup pengatur fungsi, jarum penunjuk serta skala tinggi dan skala rendah.

Prinsip kerja

Pada rangkaian listrik, voltmeter merupakan suatu alat untuk mengukur besar tegangan listrik. Pergerakan jarum penunjuk pada voltmeter terjadi karena adanya gaya magnet yang timbul sebagai hasil interaksi antara medan magnet dan kuat arus listrik. Simpangan yang dihasilkan oleh pergerakan jarum sebanding dengan kuat arus listrik yang mengalir. Arus listrik yang terukur merupakan arus listrik yang melalui kumparan yang diletakkan di antara medan magnet. Peningkatan arus berarti peningkatan simpangan pergerakan jarum sehingga akan menunjuk ke nilai pengukuran tegangan yang lebih besar. Voltmeter dipasang secara paralel dengan komponen yang akan diukur dalam rangkaian listrik.

Komponen

Voltmeter analog (dengan jarum)

Bagian-bagian penyusunnya terdiri dari tiga buah lempengen tembaga. Letak tembaga berada di dalam sebuah bakelit pada lempengan dalam yang dirangkai dalam tabung kaca atau plastik. Ukuran tabung kaca umumnya sekitar 15 cm dengan diameter 10 cm. Lempengen luar berfungsi sebagai anoda dan lempengen yang terletak di tengah berfungsi sebagai katoda. Voltmeter dibuat dengan memiliki galvanometer dan hambatan yang dirangkai seri sebagai faktor pengali. Hambatan seri meningkatkan batas ukur voltmeter hingga beberapa kali lipat.

Batas ukur

Voltmeter merupakan alat ukur yang berfungsi untuk mengukur besar tegangan listrik yang ada di suatu rangkaian listrik dalam besaran dan satuan tertentu. Batas ukur dalam voltmeter dinyatakan dalam milivolt (mV), voltmeter (V), mikrovolt, atau kilovolt (kV). Batas ukur merupakan nilai maksimum tegangan yang mampu diukur oleh sebuah voltmeter. Pengukuran tegangan listrik yang melebihi nilai maksimum dari batas ukur voltmeter akan mengakibatkan terjadinya kerusakan komponen voltmeter. Batas ukur dari voltmeter dapat diperbesar hingga beberapa kali lipat dengan menggunakan faktor pengali.

Voltmeter yang menggunakan prinsip kumparan putar memiliki koil yang terhubung secara seri dengan resistansi yang tinggi. Pada voltmeter arus searah, tahanan pengali dipasang secara seri dengan kumparan putar magnet permanen yang berfungsi sebagai faktor pengali. Tahanan pengali mengubah gerakan kumparan menjadi sebuah voltmeter arus searah. Pada tahanan pengali, arus dibatasi ke alat ukur agar tidak melebihi arus skala penuh. Pengukuran tegangan pada arus searah hanya dilakukan pada beda potensial antara dua titik dalam sebuah rangkaian arus searah. Voltmeter dihubungkan secara paralel terhadap sebuah sumber tegangan atau komponen rangkaian. Penetapan polaritas membuat terminal-termianal pada voltmeter diberi tanda positif dan negatif. Perbesaran batas ukur dilakukan dengan menentukan nilai tahanan pengali melalui faktor tegangan rentang maksimum (V), arus defleksi (Im), tahanan dalam (Rm), dan tahanan pengali. (Rs), dengan rumus: V= Im (Rs+Rm).

Pada voltmeter dengan batas ukur sampai 500 Volt, tahanan pengali dipasang di bagian dalam voltmeter. Pada tegangan yang lebih tinggi, tahanan pengali dipasang pada sepasang probe kutub di bagian luar voltmeter. Tujuan pemasangan luar ialah untuk mencegah terjadinya panas berlebihan di bagian dalam voltmeter. Penambahan sejumlah pengali beserta sebuah sakelar pemilih, membuat voltmeter mampu digunakan pada sejumlah nilai tegangan.

Jenis

  • Voltmeter digital

Voltmeter digital adalah voltmeter yang menunjukkan hasil pengukuran tegangan listrik secara digital. Prinsip kerjanya adalah mengubah tegangan masukan analog menjadi digital. Volmeter digital menggunakan pengubah analog-ke-digital. Representasi digital dilakukan dengan menggunakan kode-BCD. Pemakaian pengubah analog-ke-digital hanya dilakukan jika tegangan listrik yang akan diukur bernilai kecil. Pada tegangan tinggi, pengubah analog-ke-digital didahului oleh potensiometer. Setelah tegangan listrik dapat diperkecil, barulah diukur dengan pengubah analog-ke-digital. Cara lain yang digunakan adalah penggunaan resistor dalam pengukuran jatuh tegangan. Voltmeter digital umumnya memiliki tampilan empat digit. Pada voltmeter digital dengan jumlah digit lebih dari empat, ketepatan pengukuran menurun.

Cara pakai

Langkah awal dalam menggunakan voltmeter ialah merangkai komponen yang memiliki potensial berbeda secara paralel. Voltmeter memiliki kutub negatif dan kutub positif sehingga pemasangannya harus disesuaikan dengan arah arus listrik pada rangkaian listrik. Selain itu, adanya perbedaan potensial antara kutub positif dan negatif harus dipastikan sebelum pemakaian voltmeter. Kutub positif harus dipastikan memiliki potensial yang lebih tinggi dibandingkan dengan kutub negatif. Voltmeter memiliki probe positif, negatif, dan probe tambahan. Jika terjadi penyimpangan ke kiri pada jarum penunjuk dari voltmeter, maka dipastikan bahwa pemasangan kabel terbalik. Pada rangkaian arus bolak-balik posisi kabel positif dan negatif tidak terlalu dipertimbangkan, sedangkan pada rangkaian arus searah, posisinya harus tepat.

Satuan pengukuran

Satuan pengukuran tegangan listrik yang digunakan secara internasional adalah Volt. Standar satuan ini pertama kali ditetapkan pada tahun 1893 bersama dengan satuan Ampere dan satuan Ohm. Hasil akhir dari pertemuan internasional tersebut adalah penetapan nilai dari satuan Volt internasional. Volt internasional dijelaskan sebagai sel Clark pada 15oC dengan gaya gerak listrik sebesar 1,434 Volt. Pada tanggal 1 Januari 1948 ditetapkan sebuah standar baru yang menjadi standar absolut hingga saat ini. Dalam standar absolut ditetapkan bahwa satu Volt internasional sama dengan nilai dari 1,000330 Volt absolut.

Kalibrasi

Kalibrasi voltmeter dilakukan dengan menggunakan jembatan Wheatstone yang dikembangkan oleh Charles Wheatstone. Proses kalibrasi melibatkan pengukuran nilai resistansi yang tidak diketahui sebagai alat untuk mengkalibrasi instrumen pengukuran. Penentuan tingkat kalibrasi dilakukan menggunakan kawat geser resistif yang panjang.

Kegunaan

  • Pengukuran potensial elektrostatik

Pengukuran potensial elektrostatik dilakukan dengan menggabungkan voltmeter, amperemeter dan elektrometer yang telah dikalibrasi. Ketiganya digunakan untuk mengetahui besarnya nilai potensial elektroslatik yang telah dikalibrasi. Selain itu, voltmeter juga dapat menggantikan peran galvanometer balistik dalam pengukuran elektrostatik. Penggunaan voltmeter menghasilkan simpangan yang senilai dengan penunjuk arus listrik pada galvanometer.

  • Pengukuran induksi magnetik

Voltmeter dapat digunakan untuk mengukur nilai induksi magnetik. Sebuah lilitan kawat dengan ukuran yang sangat kecil diletakkan di dalam ruang yang terdapat medan magnet dan dihubungkan dengan voltmeter. Ketika medan induksi terjadi, maka jarum penunjuk pada voltmeter akan bergerak dan menunjukkan nilai tegangan listrik yang teramati secara langsung. Harga medan induksi ditentukan melalui perkalian nilai antara medan magnet induksi, tegangan dan waktu serta pembagian ketiganya dengan luas permukaan lilitan.

  • Praktikum dan penelitian kimia

Voltmeter dimanfaatkan dalam kegiatan praktikum kimia khususnya pada penelitian kimia unsur golongan utama jenis kedua. Di dalam laboratorium kimia, voltmeter disimpan dalam ruang alat ukur pada laci atau lemari khusus. Penyimpanannya dalam keadaan tertutup dan dapat dibuka secara mudah. Selain itu, ruang penyimpanan selalu dalam keadaan bersih dan kering serta tidak miring.

Sumber: https://id.wikipedia.org/

Selengkapnya
Apa itu Voltmeter?

Teknik Elektro dan Informatika

Transformator

Dipublikasikan oleh Nadia Pratiwi pada 27 Mei 2024


Transformator atau trafo (disebut juga pengubah arus) adalah peralatan listrik yang mengubah bentuk energi listrik menjadi suatu bentuk energi listrik yang lainnya. Nilai tegangan listrik yang dihasilkan oleh transformator ditentukan oleh kebutuhan energi listrik. Jenis transformator meliputi transformator penaik tegangan, transformator penurun tegangan, transformator pengukuran dan transformator elektronik. Transformator dapat dipasang dari satu rangkaian listrik ke yang lain, atau beberapa rangkaian. Arus yang bervariasi dalam setiap kumparan transformator menghasilkan fluks magnet yang bervariasi dalam inti transformator, yang menginduksi gaya gerak listrik yang bervariasi pada kumparan lain yang melilit pada inti yang sama. Energi listrik dapat ditransfer antara kumparan yang terpisah tanpa koneksi logam (konduktif) antara kedua sirkuit. Hukum induksi Faraday, ditemukan pada tahun 1831, menjelaskan efek tegangan yang diinduksi dalam setiap kumparan karena perubahan fluks magnet yang dikelilingi oleh kumparan.

Transformer paling umum digunakan untuk meningkatkan tegangan AC rendah pada arus tinggi (transformator step-up) atau mengurangi voltase AC tinggi pada arus rendah (transformator step-down) dalam aplikasi tenaga listrik, dan untuk menyambungkan tahapan sirkuit pemrosesan sinyal. Transformer juga dapat digunakan untuk isolasi, di mana tegangan sama dengan tegangan keluar, dengan kumparan terpisah tidak terikat secara elektrik satu sama lain.

Sejak penemuan transformator potensial konstan pertama pada tahun 1885, transformer telah menjadi penting untuk transmisi, distribusi, dan pemanfaatan dari alternatif tenaga arus listrik. Berbagai macam desain transformator ditemukan dalam aplikasi daya elektronik dan listrik. Ukuran transformator berkisar dari transformer RF dengan volume kurang dari satu sentimeter kubik, hingga unit dengan berat ratusan ton yang digunakan untuk menghubungkan jaringan listrik.

Prinsip

Transformator ideal

Transformator yang ideal adalah tranformator linier teoritis yang lossless dan digabungkan dengan sempurna. Kopling sempurna menyiratkan permeabilitas magnetik inti tak terhingga tinggi dan induktansi berliku dan gaya magnetomotive nol bersih (i.e. ipnp - isns = 0).[6][b]
Transformator ideal terhubung dengan sumber VP pada impedansi primer dan beban ZL di sekunder, di mana 0 < ZL < ∞.

Arus yang bervariasi dalam belitan primer transformator berupaya membuat fluks magnet yang bervariasi dalam inti transformator, yang juga dikelilingi oleh belitan sekunder. Fluks yang bervariasi ini pada belitan sekunder menginduksi gaya gerak listrik yang bervariasi (EMF, tegangan) pada belitan sekunder karena induksi elektromagnetik dan arus sekunder yang dihasilkan menghasilkan fluks yang sama dan berlawanan dengan yang dihasilkan oleh belitan primer, sesuai dengan hukum Lenz.

Gulungan dililit di sekitar inti permeabilitas magnetik yang sangat tinggi sehingga semua fluks magnet melewati baik gulungan primer dan sekunder. Dengan sumber tegangan yang terhubung ke belitan primer dan beban yang terhubung ke belitan sekunder, arus transformator mengalir ke arah yang ditunjukkan dan gaya magnetomotive inti dibatalkan ke nol.

Menurut hukum Faraday, karena fluks magnet yang sama melewati belitan primer dan sekunder pada transformator ideal, tegangan diinduksi pada setiap belitan sebanding dengan jumlah belitannya. Rasio tegangan belitan transformator berbanding lurus dengan rasio belitan belitan.

Identitas transformator ideal ditunjukkan dalam persamaan. Gambar 5 adalah perkiraan yang masuk akal untuk transformator komersial tipikal, dengan rasio tegangan dan rasio belitan berliku keduanya berbanding terbalik dengan rasio arus yang sesuai.

Impedansi beban yang dirujuk ke sirkuit primer sama dengan rasio belokan yang dikuadratkan dengan impedans beban sirkit sekunder.

Persamaan EMF transformator

Jika fluks pada inti murni sinusoidal, hubungan keduanya berliku di antara tegangan rms-nya Erms dari belitan, dan frekuensi suplai f, jumlah belokan N, luas penampang inti a dalam m2 dan puncak kepadatan fluks magnetik Bpeak dalam Wb/m2 atau T (tesla) diberikan oleh persamaan EMF universal:

𝐸rms=2𝜋𝑓𝑁𝑎𝐵peak2≈4.44𝑓𝑁𝑎𝐵peak

Polaritas

Suatu konvensi titik sering digunakan dalam diagram sirkuit transformator, nameplates atau marka terminal untuk menentukan polaritas relatif dari belitan transformator. Arus sesaat yang meningkat secara positif memasuki ujung ‘titik belitan primer menginduksi tegangan polaritas positif yang keluar dari ujung‘ titik inding belitan sekunder. Transformator tiga fase yang digunakan dalam sistem tenaga listrik akan memiliki papan nama yang menunjukkan hubungan fase antara terminal mereka. Ini mungkin dalam bentuk diagram fasor, atau menggunakan kode alfanumerik untuk menunjukkan jenis koneksi internal (wye atau delta) untuk setiap belitan.

Jenis

  • Transformator arus

Transformator arus adalah jenis transformator yang digunakan untuk mengetahui besarnya kuat arus listrik pada tegangan tinggi. Bagian dalam transformator arus tersusun dari belitan primer dan belitan sekunder. Jumlah belitan primer sangat sedikit, sedangkan jumlah belitan sekunder sangat banyak. Bagian belitan sekunder terhubung ke alat ukur listrik yaitu amperemeter. Bagian sekunder juga terhubung ke rangkaian pengendali dan relai proteksi.

  • Transformator tegangan

Transformator tegangan adalah jenis transformator yang digunakan untuk mengetahui besarnya tegangan listrik pada tegangan tinggi. Bagian dalam transformator tegangan tersusun dari belitan primer dan belitan sekunder. Jumlah belitan primer sangat banyak, sedangkan jumlah belitan sekunder sangat sedikit. Bagian belitan sekunder terhubung ke alat ukur listrik yaitu voltmeter. Bagian sekunder juga terhubung ke rangkaian pengendali dan relai proteksi.

  • Transformator penaik tegangan

Transformator penaik tegangan adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.

  • Transformator penurun tegangan

Transformator penurun tegangan memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam adaptor AC-DC.

  • Autotransformator

Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan juga kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder.

Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).

  • Autotransformator variabel

Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.

  • Transformator isolasi

Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling

  • Transformator pulsa

Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.

  • Transformator tiga fase

Transformator tiga fase (3-phase) sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta.

Hubungan primer-sekunder

Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah 
𝛿𝜙=𝜖×𝛿𝑡
 dan rumus untuk ggl. induksi yang terjadi di lilitan sekunder adalah 
𝜖=𝑁𝛿𝜙:𝛿𝑡

Karena kedua kumparan dihubungkan dengan fluks yang sama, maka 
𝛿𝜙:𝛿𝑡=𝑉𝑝:𝑁𝑝=𝑉𝑠:𝑁𝑠

Dengan menyusun ulang persamaan akan didapat 
𝑉𝑝:𝑉𝑠=𝑁𝑝:𝑁𝑠 Dari rumus-rumus di atas, didapat pula: 
𝑉𝑝𝐼𝑝=𝑉𝑠𝐼𝑠

Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.

Konstruksi

Inti

Transformator inti tertutup dibangun dalam 'bentuk inti' atau 'bentuk kerangka'. Ketika belitan mengelilingi inti, transformator adalah bentuk inti; ketika belitan dikelilingi oleh inti, transformator berbentuk pelindungnya. Desain bentuk pelindung mungkin lebih lazim daripada desain bentuk inti untuk aplikasi transformator distribusi karena relatif mudah dalam menumpuk inti di sekitar gulungan berliku.

Desain bentuk inti cenderung, sebagai aturan umum, lebih ekonomis, dan karena itu lebih lazim, daripada desain bentuk pelindung untuk penerapan transformator daya tegangan tinggi di ujung bawah rentang tegangan dan peringkat daya mereka (kurang dari atau sama dengan, nominal, 230 kV atau 75 MVA). Transformator berbentuk pelindung dicirikan memiliki rasio kVA terhadap berat yang lebih baik, karakteristik kekuatan hubung-pendek yang lebih baik, dan kekebalan yang lebih tinggi terhadap kerusakan transit.

Pendingin

Tampilan cutaway transformator terendam cairan. Konservator (penampung) di bagian atas menyediakan isolasi cair-ke-atmosfer saat level cairan pendingin dan perubahan suhu. Dinding dan sirip memberikan disipasi panas yang diperlukan.
Ini adalah aturan umum bahwa harapan hidup insulasi listrik dibelah dua untuk setiap kenaikan suhu operasi 7 °C hingga 10 °C (contoh penerapan persamaan Arrhenius).

Minyak transformator adalah minyak mineral yang sangat halus yang mendinginkan gulungan dan isolasi dengan beredar di dalam tangki transformator. Minyak mineral dan sistem isolasi kertas telah dipelajari dan digunakan secara luas selama lebih dari 100 tahun. Diperkirakan 50% transformator daya akan bertahan selama 50 tahun penggunaan, bahwa usia rata-rata kegagalan transformator daya adalah sekitar 10 hingga 15 tahun, dan sekitar 30% kegagalan transformator daya disebabkan oleh kegagalan isolasi dan kelebihan beban.

Isolasi

Isolasi harus disediakan antara belitan individu belitan, antara belitan, antara belitan dan inti, dan pada terminal belitan.

Isolasi inter-turn dari transformator kecil mungkin merupakan lapisan pernis insulasi pada kawat. Lapisan kertas atau film polimer dapat dimasukkan di antara lapisan gulungan, dan antara gulungan primer dan sekunder. Sebuah transformator dapat dilapisi atau dicelupkan ke dalam resin polimer untuk meningkatkan kekuatan belitan dan melindunginya dari kelembaban atau korosi. Resin dapat diimpregnasi ke belitan Isolasi menggunakan kombinasi vakum dan tekanan selama proses pelapisan, menghilangkan semua rongga udara dalam belitan. Dalam batas, seluruh gulungan dapat ditempatkan dalam cetakan, dan resin ditaburkan ke sekelilingnya sebagai blok padat, engkapsulasi gulungan.

Bushing

Transformator yang lebih besar dilengkapi dengan bushing berinsulasi tegangan tinggi yang terbuat dari polimer atau porselen. Bushing besar dapat menjadi struktur yang kompleks karena harus memerlukan pengendalian yang hati-hati terhadap gradien medan listrik tanpa membiarkan oli transformator bocor.

Parameter klasifikasi

Gardu listrik di Melbourne, Australia menunjukkan tiga dari lima transformator 220 kV - 66 kV, masing-masing dengan kapasitas 150 MVA
Transformer dapat diklasifikasikan dalam banyak cara, seperti berikut ini:

  • Nilai daya: Dari sebagian kecil volt-ampere (VA) hingga lebih dari seribu MVA.
  • Tugas transformator: Berkelanjutan, waktu singkat, intermiten, periodik, bervariasi.
  • Rentang frekuensi: Frekuensi daya, frekuensi audio, atau frekuensi radio.
  • Kelas tegangan: Dari beberapa volt hingga ratusan kilovolt.
  • Jenis pendingin: Kering atau direndam cairan; didinginkan sendiri, didinginkan udara paksa; didinginkan minyak paksa, pendinginan air.
  • Penerapan: suplai daya, pencocokan impedansi, tegangan keluaran dan stabilisator arus, pulsa, isolasi sirkuit, distribusi daya, penyearah, tungku busur, output amplifier, dll.
  • Bentuk magnetik dasar: Bentuk inti, bentuk pelindung, konsentris, sandwich.
  • Deskriptor transformator konstan-potensial: Step-up, step-down, isolasi.
  • Konfigurasi gulungan umum: Oleh grup vektor IEC, kombinasi dua-belitan dari penetapan fase delta, wye atau star, dan zigzag; autotransfomator, Scott-T
  • Konfigurasi belitan fase-shift rectifier: 2-belitan, 6-pulsa; 3-berliku, 12-pulsa; . . . n-belitan, [n-1]*6-pulsa; poligon; dll ..

Pengujian

Pengujian transformator bertujuan untuk mengetahui karakteristik operasi dari transformator. Paramater yang digunakan untuk mengetahuinya ada empat, yaitu resistansi ekuivalen, reaktansi bocor, konduktansi rugi inti, dan suseptibilitas magnetik. Pengukuran resistansi ekuivalen dan reaktansi bocor didasarkan kepada kumparan primer maupun kumparan sekunder di dalam transformator. Sedangkan pengukuran konduktansi rugi inti berkebalikan dengan resistansi ekuvalen, dan pengukuran suseptibiitas magnetik berkebalikan dengan reaktansi rugi inti. Jenis pengujian yang diberikan kepada empat paramater ini ada dua, yaitu pengujian beban nol dan pengujian hubung singkat.

Efisiensi

Efisiensi transformator dapat diketahui dengan rumus 
𝜂=𝑃𝑜𝑃𝑖100% Sebagai akibat adanya kerugian pada transformator. Maka efisiensi transformator tidak dapat mencapai 100%. Untuk transformator daya frekuensi rendah, efisiensi bisa mencapai 98%.

Penerapan

Berbagai desain aplikasi listrik spesifik memerlukan berbagai jenis transformator. Walaupun mereka semua berbagi prinsip-prinsip transformator karakteristik dasar, mereka dikustomisasi dalam konstruksi atau sifat listrik untuk persyaratan pemasangan atau kondisi sirkuit tertentu.

Dalam transmisi tenaga listrik, transformer memungkinkan transmisi daya listrik pada tegangan tinggi, yang mengurangi kerugian akibat pemanasan kabel. Hal ini memungkinkan pembangkit yang berlokasi secara ekonomis pada jarak dari konsumen listrik. Semua kecuali sebagian kecil dari kekuatan listrik dunia telah melewati serangkaian transformator pada saat mencapai konsumen.

Sumber: https://id.wikipedia.org/

Selengkapnya
Transformator

Teknik Elektro dan Informatika

Transformasi Energi

Dipublikasikan oleh Nadia Pratiwi pada 27 Mei 2024


Transformasi energi atau konversi energi adalah proses perubahan energi dari satu bentuk energi ke bentuk energi yang berbeda. Prinsip transformasi energi dimanfaatkan oleh manusia ke dalam sistem yang mampu menghasilkan usaha. Setiap proses transformasi energi pasti mengalami kerugian. Setiap kerugian dalam transformasi energi dipengaruhi oleh lingkungan dan sifat alami energi yang cenderung menyebar. Kegiatan konversi energi yang terencana harus memiliki beberapa prinsip umum dengan validitas yang terbukti sehingga dapat digunakan oleh pemakai akhir energi. Prinsip utama dalam transformasi energi adalah penghematan kerugian energi dan peningkatan efisiensi energi yang diatur melalui manajemen energi. Konversi energi dilakukan dengan memperhatikan manajemen energi tanpa memandang keragaman teknologi pemakaian energi di pengguna akhir. Proses transformasi energi dapat dilakukan dengan menggunakan mesin konversi energi. Pengubahan energinya meliputi energi mekanis, energi listrik, energi kimia, energi nuklir dan energi termal.

Konsep dasar

1. Energi

Dalam konsep teknologi dan fisika, energi diartikan sebagai kemampuan melakukan usaha. Sifat energi di dalam alam adalah kekal. Sesuai dengan hukum termodinamika pertama bahwa energi tidak dapat diciptakan maupun dimusnahkan. Sifat alami dari energi adalah berubah-ubah dari satu bentuk ke bentuk yang lainnya. Selain mampu berubah-ubah, energi juga dapat berpindah-pindah. Meskpun memiliki sifat berubah-ubah dan berpindah-pindah, jumlah keseluruhan energi adalah tetap. Manusia memanfaatkan perubahan energi yang berguna untuk kebutuhan hidupnya.

2. Termodinamika

Kajian fisika tentang perubahan energi panas menjadi bentuk energi lain secara khusus masuk dalam bidang ilmu termodinamika. Konsep konversi energi secara khusus mengacu pada hukum pertama termodinamika dan hukum termodinamika kedua. Pengukuran energi di dalam termodinamika hanya dinyatakan dengan besaran maksroskopis dan tidak dengan besaran mikroskopis. Konsep mengenai sistem termodinamika menjadi pemikiran terawal dalam memahami proses konversi energi. Prinsip sistem termodinamika ini digabungkan bersama dengan prinsip kesetimbangan energi. Kedua prinsip ini dimanfaatkan untuk mengetahui tingkatan unjuk kerja yang dihasilkan selama proses konversi energi.

  • Hukum kenol termodinamika

Hukum kenol termodinamika menyatakan bahwa kesetimbangan akan terbentuk ketika terdapat tiga sistem dengan dua sistem di antaranya setimbang dengan sistem ketiga. Hukum ini dilandasi oleh konsep perpindahan panas yang terjadi dari suatu sistem menuju ke sistem yang lainnya. Perbedaan suhu antar sistem menjadi penyebab terjadinya perpindahan panas secara umum. Sifat perpindahan panas dari suatu sistem ke sistem lain adalah pemuaian secara kelistrikan. Hukum kenol termodinamika tetaop berlaku meskipun suatu sistem tidak saling berhubungan secara langsung.

  • Hukum pertama termodinamika

Hukum pertama termodinamika menyatakan bahwa berlangsungnya suatu proses termal akan membuat jumlah entropi bernilai konstan atau bertambah di dalam suatu sistem yang terisolasi. Hukum pertama termodinamika sejalan dengan prinsip kenaikan entropi. Hukum pertama termodinamika berlaku pula dalam kasus hukum kekekalan energi. Nilai perubahan energi dalam dari suatu sistem termodinamika yang terisolasi selalu sama dengan jumlah keseluruhan energi kalor yang memasuki suatu sistem. Usaha yang diberikan kepada sistem juga sama dengan nilai perubahan energi.

  • Hukum kedua termodinamika

Hukum kedua termodinamika dilandasi oleh adanya entropi. Pernyataan resmi yang menjadi penjelasan bagi hukum kedua termodinamika tidak dapat diberikan dengan tepat. Setiap pernyataan hukum kedua termodinamika oleh ilmuwan dapat diterima selama sesuai dengan hasil percobaan. Clausius merupakan salah satu ilmuwan yang memberikan pernyataan mengenai hukum kedua termodinamika yang dapat diterima. Clausius menyatakan bahwa jenis sistem apapun tidak mungkin dapat bekerja sedemikian rupa tetapi hanya menghasilkan perpindahan energi sebagai panas dari sistem. Pernyataan Clausius dapat diterapkan pada perpindahan panas dengan temperatur yang lebih rendah pada suatu sistem ke sistem lain dengan temperatur yang lebih tinggi. Landasan pernyataan ini adalah prinsip kenaikan entropi.

Konversi energi terbarukan

1. Konversi energi laut

Energi listrik dapat dihasilkan melalui energi yang terkandung dalam laut yang meliputi gerakan gelombang, daya pasang surut dan panas laut. Ketinggian air dari cekungan laut ke puncak permukaan laut dapat menghasilkan energi gelombang. Sementara energi kinetik diperoleh dari gerakan air. Gerak osilasi dari permukaan air dapat menghasilkan energi pasang surut. Osilasi laut ini terjadi secara berkala serta dapat diketahui kapan terjadinya. Energi listrik juga dapat dihasilkan dari pengubahan energi panas yang tersimpan di dalam lautan.

2. Konversi energi angin

Energi angin merupakan sumber energi yang tak terbatas sehingga termasuk energi terbarukan. Kelebihan dari energi angin adalah dapat digunakan berulang kali sebagai pembangkit energi tanpa menimbulkan pencemaran udara atau pencemaran lingkungan. Konversi energi angin dikelola dengan sistem konversi energi yang mengubah energi angin menjadi energi mekanik. Peralatan yang digunakan adalah turbin angin.

Proses konversi dimulai dengan pengubahan energi potensial angin menjadi energi mekanik. Bentuk pengubahan energi ini menghasilkan torsi pada putaran turbin angin. Energi ini kemudian disalurkan ke generator listrik atau ke pompa mekanis. Peralatan pengubah energi angin menjadi energi listrik disebut turbin angin, sementara yang mengubahnya menjadi energi mekanik disebut kincir angin. Jenis pembangkit listrik yang mengubah energi angin menjadi energi listrik ialah pembangkit listrik tenaga bayu.

3. Konversi energi listrik

Konversi energi listrik berkaitan dengan proses konversi energi dari energi listrik menjadi energi lainnya. Proses konversi energi listrik dilakukan oleh peralatan yang memanfaatkan arus listrik agar dapat bekerja. Konversi energi listrik menjadi bentuk energi lain hanya terjadi melalui penghantar listrik. Energi listrik umumnya diubah menjadi cahaya atau energi gerak. Hasil konversi energi listrik dimanfaatkan oleh rumah tangga, industri maupun pabrik.

4. Konversi energi elektromekanik

Konversi energi elektromekanik merupakan pengubahan energi mekanik menjadi energi listrik dan sebaliknya. Perubahan energi pada energi elektromekanik dapat berlangsung dari suatu jaringan listrik menuju ke jaringan listrik yang berbeda. Proses konversi energi elektromekanik menggunakan generator listrik dan motor listrik yang bekerja dalam suatu sistem tenaga listrik. Peralatan pengubah energinya bekerja berdasarkan prinsip elektromagnetik dengan memanfaatkan keberadaan medan magnet. Fungis medan magnet ada dua, yaitu penyimpanan energi dan menghubungkan proses konversi energi.

Mesin konversi energi

Mesin konversi energi adalah mesin atau alat yang digunakan untuk mengubah suatu bentuk energi ke bentuk energi yang lainnya. Bentuk energi yang umumnya diubah oleh mesin koversi energi meliputi energi mekanis, energi listrik, energi kimia, energi nuklir dan energi termal. Mesin konversi energi terbagi menjadi dua jenis, yaitu mesin konversi energi konvensional dan mesin konversi energi non-konvensional. Tiap mesin konversi energi menghasilkan perubahan energi dengan batasan-batasan perubahan tertentu.

Pengelolaan

Manajemen energi

Manajemen energi berkaitan dengan konversi energi. Prinsip umum manajemen energi dan konversi energi adalah sama, yaitu harus bersifat umum dan memiliki tingkat keabsahan yang telah terbukti. Manajemen energi tidak dipengaruhi oleh tingkat keragaman pengguna akhir energi baik dari segi standar teknis, ekonomi, dan lingkungan. Konversi energi di dalam kajian manajemen energi berarti bahwa setiap proses perubahan energi harus mengalami kerugian energi sesedikit mungkin. Manajemen energi dalam hal ini berperan dalam meningkatkan efisiensi energi akibat adanya kegiatan konversi energi. Manajemen energi yang efektif tercapai melalui tahap pengumpulan informasi dan penyampaian informasi. Tahap pengumpulan informasi meliputi analisis data sejarah energi, audit energi, akuntansi, analisis teknik serta pembuatan proposal investasi dengan studi kelayakan sebagai acuannya. Sementara tahap penyampaian informasi meliputi pelatihan dan pemberian informasi kepada personel yang bekerja di bidang energi.

Program manajemen energi disesuaikan dengan kemampuan anggaran perusahaan dalam pembiayaan energi. Indeks kinerja utama pada energi-energi yang penting diidentifikasi untuk keperluan penghematan energi. Pekerjaan manajemen energi ini dapat dilakukan oleh konsultan internal maupun konsultan eksternal.

  • Pengaliran energi

Pengaliran energi merupakan bagian dari manajemen energi. Energi disalurkan dari batas wilayah menuju ke pengguna akhir. Pengaliran energi dilakukan dengan beberapa bentuk sesuai dengan jenis energi dan kebutuhan pemakai. Beberapa jenis energi berperan sebagai bahan bakar atau produk siap pakai yang dibeli. Sebagian besar energi lainnya ditransformasi menjadi energi lain di lokasi penyaluran sebelum disalurkan lagi menuju ke pengguna energi. Beberapa di antaranya ialah energi listrik pada gardu listrik dengan transformator, pabrik boiler, pembangkit listrik dengan kogenerasi dan trigenerasi. Ada juga energi yang langsung digunakan oleh pengguna energi setelah dikonversi, antara lain energi surya dan energi angin.

Pada beberapa fasilitas dan pabrik, pengubahan energi disesuaikan dengan kebutuhan pengguna akhir. Transformasi lebih lanjut dalam fasilitas dan pabrik harus dilakukan untuk memperoleh berbagai bentuk energi turunan yang cocok untuk pengguna akhir. Jelas, memeriksa efisiensi semua instalasi transformasi dan menjaganya setinggi mungkin adalah prioritas utama. Aliran energi dalam berbagai bentuk didistribusikan di sekitar lokasi untuk memproses dan memfasilitasi pengguna akhir. Sistem distribusi bertanggung jawab atas kehilangan, yang harus dikurangi dengan perencanaan yang benar dan isolasi termal.

Pengguna akhir energi di sekitar wilayah melakukan operasi berbeda yang mengarah pada produk atau layanan akhir. Ini membentuk output dari situs, bersama dengan limbah (yang mungkin atau mungkin tidak mengandung energi dalam beberapa bentuk) dan energi yang terbuang. Limbah dan energi yang terbuang meliputi air, bahan padat dan cairan (mudah terbakar atau tidak), dan gas.

  • Penyimpanan energi

Setiap energi yang diubah ke bentuk energi lain membutuhkan penyimpanan energi sebelum digunakan oleh konsumen energi. Dalam manajemen energi, penyimpanan energi merupakan cara mengurangi biaya energi serta memperlancar rantai pasok energi kepada konsumen. Produsen energi harus mengadakan eksploitasi peluang pembelian energi dalam tingkat rendah dan mengetahui profil permintaan energi. Penyimpanan energi umumnya menggunakan pendekatan hidro, mekanika, listrik, dan termal.

Reka baru

Konsumsi energi dunia mengalami kecenderungan peningkatan seiring dengan bertambahnya jumlah manusia di dunia. Kecenderungan ini juga disebabkan oleh meningkatnya kebutuhan manusia akan barang dan kenyamanan. Manusia mulai menciptakan berbagai teknologi dan penemuan bentuk konversi energi inovatif. Sumber energi diperoleh dari Bumi dan luar angkasa. Sumber energi tersebut merupakan pengganti bahan bakar fosil, nuklir dan sumber energi terbarukan yang ada di Bumi. Pemenuhan kebutuhan konsumsi energi juga cenderung terbentuk melalui penghematan energi yang dilakukan oleh industri, bangunan, dan transportasi. Penghematan ini menjadi salah satu faktor politik dunia.

Sumber: id.wikipedia.org

Selengkapnya
Transformasi Energi

Teknik Elektro dan Informatika

Tegangan listrik

Dipublikasikan oleh Nadia Pratiwi pada 27 Mei 2024


Tegangan listrik atau beda potensial adalah tegangan yang bekerja pada elemen atau komponen dari satu terminal/kutub ke terminal/kutub lainnya yang dapat menggerakkan muatan listrik. Secara matematis, kerja yang dilakukan untuk menggerakkan suatu muatan sebesar satu coulomb dapat didefinisikan sebagai perubahan energi yang dikeluarkan(dalam Joule) terhadap perubahan muatan listrik (dalam Coulomb) dengan satuan Volt. Kemungkinan yang bisa terjadi pada tegangan listrik adalah tegangan jatuh atau tegangan naik.Tegangan jatuh terjadi apabila potensial dipandang dari terminal lebih rendah ke tinggi, dan tegangan naik terjadi apabila potensial dipandang dari terminal lebih tinggi ke terminal lebih rendah. Rangkaian listrik sederhana dapat dibuat bila sebuah lampu yang dihubungkan dengan sumber potensial listrik berupa baterai . Selain baterai, sumber tegangan juga dapat dihasilkan oleh aki atau sel surya. Pada titik yang berbeda perbedaan potensial dapat terjadi apabila sumber potensial listrik terpasang pada suatu rangkaian listrik yang mengalami gaya gerak listrik. Arus listrik akan mengalir dari titik yang memiliki potensial tinggi (kutub positif) ke titik yang memiliki potensial rendah (kutub negatif).

Analogi

Secara sederhana, sirkuit elektronik dapat dipermisalkan dengan suatu bejana air yang menghasilkan aliran air dalam pipa yang didorong oleh pompa air. Tekanan air dari satu titik yang berada di dekat pompa dan titik lain di ujung pipa yang memiliki perbedaan dapat dianalogikan dengan potensial tegangan listrik. Jika pompa mulai bekerja tekanan air dalam pipa pada titik di dekat pompa menjadi lebih tinggi sehingga air dalam pipa mulai terdorong dari satu titik di dekat pompa menuju titik yang lain di ujung pipa. Pergerakan air ini disebabkan adanya perbedaan tekanan sehingga mampu melakukan usaha, misalnya dapat memutar turbin. Begitu pula dalam rangkaian elektronik, perbedaan potensial yang dihasilkan misal oleh baterai mampu melakukan usaha dengan memutar motor listrik. Jika dalam analogi, air pompa tidak bekerja, maka tidak ada perbedaan tekanan dan air tidak mengalir. Begitu rangkaian elektronik, jika baterai habis, maka tidak ada perbedaan potensial tegangan listrik dan motor listrik tidak akan berputar.

Alat ukur

1. Voltmeter

Voltmeter adalah alat ukur yang digunakan untuk mengukur beda potensial atau tegangan listrik dari dua titik potensial listrik. Pada peralatan elektronik, voltmeter digunakan sebagai pengawasan nilai tegangan kerja. Voltmeter tersusun atas beberapa bagian yaitu terminal positif dan negatif, batas ukur, setup pengatur fungsi, jarum penunjuk serta skala tinggi dan skala rendah.

2. Potensiometer

Potensiometer adalah suatu alat elektronika yang digunakan untuk merancang dan mengatur sebuah pembagi tegangan yang nantinya dapat diatur tegangan outputnya. Pembagi tegangan ini dapat digunakan jika tegangan yang realtif besar memberikan bias terhadap komponen elektronika aktif, rangkaian penguat dan sebagainya.

3. Rangkaian

  • Rangkaian seri tegangan

Sumber tegangan yang dirangkai secara seri akan menghasilkan gaya gerak listrik total yang besar. Rumus dari rangkaian seri tegangan yaitu:

E total = E1 + E2 + E3 + ……..+ En

r total = 1 r + 2 r + 3 r + ……… + n

E total = gaya gerak listrik total (Volt).

r total = hambatan dalam total dari seluruh sumber tegangan (ohm).

  • Rangkaian paralel tegangan

Berbeda dengan rangkaian seri, rangkaian paralel pada sumber tegangan jika dirangkai paralel akan menghasilkan ggl total yang lebih kecil. Jika gaya gerak listrik. Bila masing-masing sumber teganganya sama, maka besar ggl totalnya sama dengan ggl masing-masing sumber tegangan tersebut. adapun rumus dari rangkaian paralel tegangan:

Etotal = E1 = E2 = E3 = ……En = E

Rumusan

Medan listrik yang terletak di antara dua titik pada beda potensial V akan menimbulkan usaha untuk membawa satu satuan muatan listrik dari suatu titik menuju ke titik yang lain. Dengan kata lain, satuan beda potensial adalah Volt. Dimana 1 Volt adalah 1 joule/coulomb. Di dalam medan listrik homogen (E), beda potensi memiliki jarak (s) antara titik-titik dengan arah yang sejajar. Jadi besarnya beda potensial (V) dirumuskan; V = E x s.[10]

Jenis

Benda yang memiliki muatan listrik bila dihubungkan dengan tanah (Bumi), maka akan menjadi netral kembali. Ini dikarenakan muatan listriknya memberikan kelebihan elektron ke Bumi atau mengambil elektron dari Bumi untuk menutup kekurangan elektronnya. Jadi benda yang bermuatan dengan kondisi muatan listrik atau tegangan listrik yang tidak seimbang maka benda yang bermuatan tersebut juga bertegangan atau berpotensial. Dua benda yang tidak sama muatannya mempunyai tegangan yang tidak sama. Antara dua benda yang tidak sama besar muatannya atau tidak sama sifat muatannya terdapat beda potensial listrik. Tegangan listrik ini merupakan jumlah energi yang dibutuhkan untuk memindahkan suatu unit muatan listrik dari satu tempat ke tempat lain, satuan tegangan dinyatakan dalam Volt yang diberi simbol “V”, 1 Volt didefinisikan sebagai tegangan listrik yang dibutuhkan untuk memindahkan 1 Ampere arus listrik melalui konduktor yang bersistansi 1 Ohm. Alessandro Volta memberikan sebuah istilah Volt yang berasal dari namanya sendiri. Ilmuwan yang berasal dari Italia ini awalnya menemukankan baterai Volt. Gaya yang mendorong perpindahan elektron melalui penghantar (konduktor) sering kali dianggap sebagai suatu gaya tegangan listrik. Besar tegangan berbanding lurus dengan kemampuan untuk mendorong elektron melalui rangkaian. Muatan listrik ini diumpamakan seperti tekanan air pada suatu bejana air. Sebuah tegangan listrik konstan disebut tegangan searah dan sumber tegangan yang berubah-ubah secara berkala dengan waktu tertentu disebut tegangan bolak-balik.

Sumber

Pembangkitan potensial tegangan dilakukan dengan beberapa cara yaitu dengan cara induksi elektromagnetik, kimiawi, panas, cahaya dan piezoelektrik. Sumber tegangan dan arus searah adalah suatu energi listrik yang mengalir secara merata setiap saat. Elemen-elemen seperti volta, baterai, dan akumulator merupakan suatu sumber energi dalam membangkitkan tegangan listrik.

Pengukuran

Satuan pengukuran tegangan listrik yang digunakan secara internasional adalah Volt. Standar satuan ini pertama kali ditetapkan pada tahun 1893 bersama dengan satuan Ampere dan satuan Ohm. Hasil akhir dari pertemuan internasional tersebut adalah penetapan nilai dari satuan Volt internasional. Volt internasional dijelaskan sebagai sel Clark pada 15 oC dengan gaya gerak listrik sebesar 1,434 Volt. Pada tanggal 1 Januari 1948 ditetapkan sebuah standar baru yang menjadi standar absolut hingga saat ini. Dalam standar absolut ditetapkan bahwa satu Volt internasional sama dengan nilai dari 1,000330 Volt absolut.

Penerapan praktis

  • Pengecatan mobil secara elektrostatis

Pemanfaatan elektrostatik telah diterapkan pada pengecatan mobil. Proses pengecatan ini dilakukan dengan bantuan robot sehingga proses penngerjaan dapat selesai dengan sangat cepat serta hasil pengecatan sangat rata dan dapat dikendalikan kontras warnanya. Pengecatan dengan memanfaatkan elektrostatik mampu memberikan penghematan pada jumlah cat yang digunakan serta sangat akurat. Metode pengecatan elektrostatik merupakan pengecatan yang ekonomis dan ramah lingkungan karena limbah yang diproduksi sangat sedikit. Prinsip yang digunakan adalah gaya tarik antara muatan positif dan negatif. Muatan listrik yang terletak pada nosel memberikan dorongan udara dan menghasilkan tegangan listrik yang sangat tinggi sehingga partikel yang keluar dari nosel mengikat sebagian muatan tersebut dan menyebabkan keluar dari nosel sebagai partikel bermuatan. Umumnya benda yang dicat merupakan logam atau bahan konduktor yang telah dilapisi dan diberi muatan listrik dengan jenis yang berlawanan. Karena bahan tersebut adalah logam maka muatan akan tersebar di permukaan logam. Partikel akan ditarik oleh muatan yang berada di permukaan sehingga keluar dari nosel dan bergerak menuju ke arah benda yang akan dicat. Muatan yang ada di permukaan bahan tersebar secara merata di seluruh permukaan sehingga partikel pelapis akan menuju bahan juga secara merata. Penyebaran partikel secara merata membuat cat tersebar secara merata pula.

  • Penyaring udara

Penyaring pembersih udara merupakan salah satu aplikasi dari gaya elektrostatik. Kegunaan penyaring ini adalah untuk menyaring partikel-partikel dari udara yang mengandung debu atau asap. Penyaring udara umumnya dipasang pada cerobong asap pabrik. Penyaring udara yang digunakan di dalam ruangan juga menerapkan prinsip kerja yang sama. Setelah melewati sejumlah penyaringan, udara kotor berubah menjadi udara bersih. Sistem penyaringan terdiri dari penyaringan awal yang menyaring secara langsung partikel-partikel kasar yang memiliki ukuran besar. Partikel ukuran yang lebih kecil dapat lolos dari saringan. Partikel ini kemudian melalui elektroda dengan tegangan listrik yang tinggi. Pemberian tegangan tinggi menyebabkan partikel yang meninggalkan elektroda menjadi bermuatan listrik. Partikel yang melewati elektroda memiliki muatan yang berlawanan sehingga dapat melekat di elektroda. Hasil penyaringan menghasilkan penumpukan partikel yang dibersihkan secara periodik. Partikel yang lolos dari elektroda pengumpul memiliki jumlah yang tidak terlalu banyak dan umumnya dilewatkan lagi pada penyaringan akhir dengan ukuran pori yang lebih kecil. Setelah keluar dari penyaringan, udara yang lolos menjadi udara bersih.

Sumber: https://id.wikipedia.org/

Selengkapnya
Tegangan listrik

Teknik Elektro dan Informatika

Mengenal Sistem Tenaga Listrik

Dipublikasikan oleh Nadia Pratiwi pada 27 Mei 2024


Sistem tenaga listrik adalah sebuah sistem yang meliputi beberapa bagian yang saling terhubung dan saling bekerja sama untuk memenuhi kebutuhan energi listrik bagi pemakai energi listrik. Ruang lingkup sistem tenaga listrik secara garis besarnya meliputi pembangkit listrik, saluran transmisi tenaga listrik, gardu induk hingga ke jaringan distribusi tenaga listrik.

Bagian-bagian

  • Gardu induk

Gardu induk merupakan salah satu komponen dari sistem tenaga listrik yang posisinya berada di antara dua komponen sistem tenaga listrik yang lainnya. Peralatan listrik yang terpasang pada gardu induk meliputi peralatan pemutus dan penghubung arus listrik. Pada bagian awal dan akhir dari gardu induk terdapat transformator penurun tegangan yang terhubung ke sistem tenaga listrik yang lainnya. Gardu induk utamanya berfungsi sebagai pemutus dan penghubung aliran daya listrik dan pengatur tingkat tegangan listrik pada sistem yang terhubung. Fungsi lainnya sebagai pengatur aliran daya listrik pasa sistem transmisi tenaga listrik dan sebagai tempat pemasangan peralatan pengaman bagi sistem tenaga listrik. Berdasarkan tingkat tegangan operasinya, gardu induk dibedakan menjadi gardu induk tegangan tinggi dan gardu induk tegangan tinggi dan gardu induk tegangan rendah.

  • Transformator

Transformator merupakan peralatan listrik yang digunakan untuk menaikkan atau menurunkan tegangan listrik pada sistem tenaga listrik. Posisinya berada pada dua jenis sistem tenaga listrik dengan tingkat tegangan listrik yang berbeda. Transformator umumnya terpasang pada kedua ujung saluran transmisi tenaga listrik. Pada bagian pembangkit listrik yang terhubung ke saluran transmisi dipasang transformator penaik tegangan, sedangkan bagian yang terhubung ke gardu induk dipasangi trasnformator penurun tegangan. Jenis transformator yang dipasang di antara kedua bagian ini adalah transformator daya yang memiliki kemampuan mempertahankan nilai daya listrik tetap stabil meskipun tegangan listriknya dinaikkan dan diturunkan.

Analisis

Seiring dengan makin kompleksnya perkembangan sistem tenaga listrik, analisis sistem tenaga listrik mulai diperlukan. Pada sistem kelistrikan modern, transmisi tenaga listrik dan distribusi tenaga listrik ke konsumen listrik dilakukan dengan nilai daya listrik yang sangat besar. Meningkatnya nilai daya listrik ini, membuat arus gangguan dan arus hubung singkat yang terjadi di dalam sistem ini diperhitungkan dalam pengoperasian sistem tenaga listrik. Cara menghitungnya menggunakan analisis sistem tenaga listrik.

Analisis aliran beban

Analisis aliran beban bertujuan untuk menghitung nilai aliran beban dan vektor tegangan pada suatu bus dan cabang-cabangnya. Perhitungan nilai dilakukan dengan bus dan cabang-cabangnya dalam kondisi normal dan terhubung dengan beban listrik pada nilai tertentu. Hasil analisis aliran beban kemudian dimanfaatkan dalam telaah atas berbagai persoalan yang berkaitan dengan jaringan listrik. Persoalan ini meliputi operasi jaringan, perluasan atau pengembangan jaringan, dan perencanaan jaringan listrik. Dalam persoalan operasi jaringan, dibahas tentang pengaturan tegangan listrik, perbaikan faktor daya listrik, kapasitas kawat penghantar, dan rugi-rugi daya yang terjadi pada jaringan listrik. Dalam persoalan perluasan atau pengembangan jaringan, dibahas tentang penentuan lokasi untuk penambahan unit baru terhadap bus beban, unit pembangkit, atau gardu induk. Sementara dalam persoalan perencanaan jaringan listrik dibahas mengenai kondisi jaringan listrik di masa depan setelah terjadinya peningkatan beban listrik seiring dengan peningkatan kebutuhan energi listrik.

Sumber: https://id.wikipedia.org/

Selengkapnya
Mengenal Sistem Tenaga Listrik

Teknik Elektro dan Informatika

Manajemen Energi

Dipublikasikan oleh Nadia Pratiwi pada 27 Mei 2024


Manajemen energi adalah program terpadu yang direncanakan dan dilaksanakan secara sistematis untuk memanfaatkan sumber daya energi dan energi secara efektif dan efisien. Tujuan diadakannya manajemen energi adalah untuk penghematan energi dan penghematan biaya akibat kenaikan harga energi, kelangkaan sumber daya energi serta kesadaran akan dampak buruk dari eksploitasi berlebihan terhadap energi bagi lingkungan. Sejak dasawarsa 1970-an, manajemen industri telah menjadikan manajemen energi sebagai salah satu fungsi industri yang utama. Faktor yang menentukan tingkat kualitas manajemen energi meliputi rantai pasok, biaya produksi, kualitas energi dan keberlanjutan lingkungan produksi. Manajemen energi digunakan dalam proses transformasi energi dengan menerapkan prinsip umum yang memiliki keabsahan yang dapat dibuktikan kebenarannya. Faktor teknologi pemakai energi tidak diperhitungkan dalam manajemen energi. Prosedur manajemen energi yang efektif meliputi tahapan analisa data sejarah energi, audit energi dan akuntansi, analisis teknik dan studi kelayakan untuk proposal bisnis dan investasi, serta pelatihan dan pemberian informasi kepada personel pelaksana pekerjaan. Pelaksanaan manajemen energi dillakukan oleh konsultan internal atau konsultan eksternal dari suatu perusahaan. Manajemen energi dikelola sesuai dengan anggaran perusahaan bagi biaya energi serta sesuai dengan indeks kinerja ilmiah dari energi.

Sejarah

Masyarakat internasional mulai menyadari kemutlakan adanya permasalahan energi ketika krisis energi dimulai pada periode tahun 1980 hingga 1990 M. Pada periode ini, dunia memasuki era industri yang memberikan masalah lingkungan yang besar dan meningkatkan harga energi dunia. Penghematan energi menjadi suatu faktor yang penting dalam perancangan pabrik dan peralatannya. Pengelola industri mulai mempertimbangkan keberadaan energi bersama dengan pertimbangan pengembalian modal.

Bidang keilmuan

Manajemen energi mengacu kepada dua bidang keilmuan yaitu keteknikan dan ekonomi. Penngembangan strategi industri di dalam pabrik dan bangunan besar dipengaruhi oleh kedua bidang tersebut. Pendidikan tradisional mengenai manajemen industri khususnya mengkaji tentang mekanika dan termodinamika. Setelah teknologi informasi dan elektronika daya berkembang secara pesat, maka kajian manajemen energi dialihkan ke kelistrikan dan termodinamika. Para pekerja yang dipekerjakan dalam pengelolaan energi juga diberikan pelatihan yang sesuai dengan bidang manajemen energi.

Manajemen energi tidak menjadi bagian dari bidang ilmu manajemen, melainkan termasuk dalam bidang teknik energi. Bidang kajian di dalam manajemen energi dikhusukan pada yang lebih pengelolaan peralatan yang mengkonsumsi energi beserta dampak ekonominya terhadap bisnis, organisasi atau perusahaan. Kehadiran manajemen energi dipengaruhi oleh meningkatnya penggunaan energi pada peralatan-peralatan yang digunakan dalam proses produksi khususnya energi listrik dan bahan bakar. Selain itu, kehadiran manajemen energi cenderung meningkat seiring peningkatan efisiensi energi dalam pemakaian mesin atau sistem produksi.

Jenis

Manajemen energi pada bangunan gedung

Sistem manajemen energi pada bangunan gedung modern menentukan ketersediaan pelayanan di dalam gedung. Beberapa fasilitas gedung yang memanfaatkan konsep energi dalam perancangannya antara lain pendinginan ruangan, ventilasi, pencahayaan, hiburan, transportasi, dan keamanan. Pengelolaan eneegi di dalam gedung modern memanfaatkan sistem elektronik yang dikendalikan secara terpusat. Tujuan pemusatan pengendalian energi adalah untuk mengurangi pemakaian energi oleh pemakai gedung tetapi kualitas kerja tetap optimal.

Data pemakaian energi juga dimanfaatkan untuk mengelola dan menetapkan strategi operasional dan pemeliharaan bangunan gedung. Tiap peralatan yang mengonsumsi energi dikumpulkan informasinya secara spesifik, khususnya periode pemakaian dan jumlah energi yang digunakan setiap kali pemakaian. Manajemen energi yang baik akan menghemat pemakaian energi, Sebaliknya, manajemen energi yang buruk menyebabkan produktivitas energi menurun, biaya pemeliharaan meningkat dan kualitas lingkungan dalam gedung menjadi buruk.

Dalam manajemen energi pada bangunan gedung diperlukan integrasi antara beberapa sistem, pengaturan dan pengawasan. Integrasi sistem terjalin antara sistem pembangkit energi, sistem baterai pusat, sistem penyejuk udara, sistem pencahayaan serta sistem lift dan eskalator. Pada area umum, integrasi pengaturan terjalin antara pengaturan pencahayaan, sistem kontrol akses, pengawasan aktivitas manusia dan keamanan, dan sistem alarm kebakaran. Selain itu, ada pula suatu sistem pengukuran yang khusus mengumpulkan data mengenai konsumsi air, listrik dan energi. Manajemen energi pada bangunan gedung wajib meyediakan layanan peringatan, kecenderungan pemakaian energi, catatan dan laporannya serta profil pemakai dan peran manajemen energi.

Prosedur

1. Pengaliran energi

Setiap jenis energi yang melalui tahap transformasi energi mengalami tahap pengaliran energi. Beberapa jenis energi digunakan dalam bentuk bahan bakar atau disimpan untuk digunakan pada keperluan tertentu dalam waktu tertentu. Sementara beberapa energi lainnya diubah pada saat pengaliran energi berlangsung. Beberapa jenis perlengkapannya yaitu transformator pada gardu listrik, boiler pada pabrik, serta trigenerasi dan kogenerasi pada pembangkit listrik. Konversi energi ini bertujuan menyimpan energi sebelum menjangkau pengguna energi. Selain itu, ada pula energi yang digunakan secara langsung setelah diubah. Jenis energi ini umumnya diperoleh dari sumber energi terbarukan seperti energi surya dan energi angin.

Pada fasilitas pabrik, transformasi energi dilakukan untuk memperoleh berbagai bentuk energi turunan yang sesuai dengan kebutuhan pengguna akhir. Hal yang menjadi prioritas dalam kegiatan perubahan energi ini adalah pemeriksaan efisiensi semua instalasi transformasi beserta dengan pemeliharaannya. Beberapa pengaliran energi ditujukan untuk memproses dan memfasilitasi pengguna akhir yang berada dekat dengan lokasi pengubahan energi. Kehilangan energi harus dikurangi selama proses pengaliran energi. Tanggung jawab ini dibebankan kepada sistem distribusi energi khususnya selama tahap perencanaan pengaliran energi dan isolasi termal.

Operasi yang berbeda dapat terjadi pada pengguna akhir energi di sekitar wilayah pengubahan energi. Perbedaan ini terjadi secara alami karena adanya perbedaan produk atau layanan akhir. Umumnya, produk energi ini menghasilkan limbah yang memiliki energi maupun telah kehabisan energi. Selain itu, proses pembuatan produk selalu menghasilkan energi yang terbuang. Limbah dan energi yang terbuang dapat berbentuk air, bahan padat, cairan yang mudah terbakar maupun yang tidak mudah terbakar, serta gas.

2. Penyimpanan energi

Setiap energi yang diubah ke bentuk energi lain membutuhkan penyimpanan energi sebelum digunakan oleh konsumen energi. Dalam manajemen energi, penyimpanan energi merupakan cara mengurangi biaya energi serta memperlancar rantai pasok energi kepada konsumen. Produsen energi harus mengadakan ekspliotasi peluang pembelian energi dalam tingkat rendah dan mengetahui profil permintaan energi. Penyimpanan energi umumnya menggunakan pendekatan hidro, mekanik, listrik, dan termal.

3. Audit energi

Audit energi merupakan proses pengumpulan dan analisis data yang digabungkan dengan kegiatan konservasi energi. Landasan pengadaan audit energi adalah adanya keharusan tersedianya tujuan dalam proses manajemen energi yang efektif dengan uraian tindakan yang dijelaskan secara rinci. Audit energi meliputi kegiatan pencatatan jenis energi dan jumlah energ yang digunakan di setiap tingkat proses manufaktur. Pencatatan dilakukan secara sistimatis dan berkesinambungan. Selama proses pengumpulan data energi, analisa dan pendefinisian kegiatan konservasi energi juga dilakukan bersamaan.

Kegiatan audit energi merupakan langkah pertama dalam mengadakan efisiensi energi. Audit energi diperlukan dalam peningkatan efisiensi energi di berbagai industri dan proses teknologi untuk mengurangi kerugian energi dan pemakaian cadangan energi. Audit energi dilakukan oleh auditor energi. Kegiatan-kegiatan di dalam audit energi meliputi survei data sederhana hingga pengujian data yang sudah ada secara rinci. Hasil analisa data kemudian digunakan untuk memperoleh data baru dengan mengggabungkan data lama dengan uji coba pabrik secara khusus. Ukuran dan jenis fasilitas pabrik mempengaruhi lamanya waktu yang diperlukan dalam pelaksanaan suatu audit. Pelaksanaan audit energi juga ditentukan oleh tujuannya.

  • Audit energi awal

Audit energi awal meliputi kegiatan survei manajemen energi dan survei energi. Waktu pelaksanaannya ditentukan oleh jenis pabrik dan fasilitasnya. Pabrik yang sederhana dapat mengadakan dan menyelesaikan audit energi awal selama sehari atau beberapa hari. Sementara itu, pabrik dengan fasilitas yang kompleks memerlukan waktu yang lebih lama. Survei manajemen energi meliputi kegiatan memahami manajemen energi yang sedang berlangsung, khususnya pengambilan keputusan dalam investasi proyek konservasi energi. Sedangkan kegiatan pada survei energi adalah membuat ulasan mengenai kondisi peralatan selama digunakan oleh pemakai energi yang penting. Jenis pemakai energi ini khususnya adalah pendidih dan sistem uap. Instrumentasi yang mampu menghasilkan energi secara efisien juga termasuk dalam peralatan penting. Audit energi awal menggunakan instrumentasi portabel dengan jumlah yang sedikit. Audit energi awal dilakukan oleh auditor energi yang berpengalaman dalam mengadakan pengamatan dan pengumpulan data yang saling terhubung satu sama lain. Hasil audit energi awal digunakan untuk diagnosa situasi energi pabrik secara cepat.

Manfaat utama dari audit energi awal ialah mengetahui penyebab-penyebab adanya pemborosan energi. Efisiensi energi dalam jangka pendek juga dapat dicapai dengan mengadakan tindakan-tindakan sederhana yang menghemat energi. Beberapa indikasi di dalam audit energi awal yaitu kecacatan insulasi, kebocoran uap dan udara-tekan, kerusakan peralatan, dan pembandingan udara dan bahan bakar yang tidak terkendali. Hal lain yang dapat diperoleh dari kegiatan audit energi awal adalah informasi mengenai analisa data yang tidak lengkap dan lokasi pengawasan manajemen energi yang perlu diperketat. Pelaporan hasil audit energi awal dapat disusun dalam bentuk seperangkat rekomendasi yang berisis tindakan berbiaya rendah yang dapat dilaksanakan segera setelah pelaporan. Selain itu, laporan audit energi awal dapat berisi rekomendasi audit yang lebih sesuai untuk menguji secara teliti di area pabrik yang terpilih.

  • Audit energi terinci

Audit energi terinci dilakukan setelah audit energi awal selesai dikerjakan. Waktu pelaksanaannya dapat mencapai beberapa pekan. Lamanya kegiatan audit energi terinci bergantung pada sifat dan kompleksitas pabrik. Audit energi terinci mengamati kondisi peralatan operasi dari segi bahan pembuatan peralatan. Indikator utamanya adalah neraca bahan dan neraca panas. Instrumentasi portabel digunakan untuk mengukur parameternya. Uji coba dalam audit energi terinci disesuaikan dengan jenis dan tujuan fasilitas yang sedang dipelajari, serta tingkat pembiayaan program manajemen energi. Uji coba yang diadakan dalam audit energi terinci meliputi uji efisiensi pembakaran, pengukuran suhu dan aliran udara bahan bakar pada peralatan utama, penentuan peralatan listrik yang menyebabkan penurunan faktor daya, dan uji sistem proses untuk peralatan yang baru diketahui spesifikasinya saja dan belum beroperasi. Audit energi rinci hanya dilakukan ketika suatu bangunan mempunyai nilai intensitas konsumsi energi yang melebihi nilai dari suatu standar yang diberlakukan.

Kebijakan

Kebijakan manajemen energi dibuat agar setiap pelaksananya dapat berperan aktif dalam mencapai tujuan manajemen energi. Penetapan kebijakan manajemen energi memberikan peluang yang lebih besar dalam pencapaian tujuan manajemen energi. Lingkup kebijakan manajemen energi meliputi pernyataan kebijakan dan strategi manajemen energi. Pernyataan kebijakan berisi pernyataan umum mengenai tujuan pelaksanaan manajemen energi. Sementara strategi manajemen berisi langkah-langkah pencapaian tujuannya. 

Adanya kebijakan manajemen energi akan mempusatkan para pelaksananya pada satu kerangka berpikir yang tunggal dalam pencapaian tujuannya. Kebijakan ini juga membentuk program kerja yang sistemasi dan menunjukkan adanya komitmen terhadap manajemen energi. Penetapan kebijakan juga dijadikan sebagai bentuk pengawasan perubahan perilaku pelaksana manajemen enerfi serta menyediakan sumber daya yang memadai. Manfaat lain dari penetapan kebijakan manajemen energi adalah membangun kesadaran energi bagi para pelaksananya. Efektifitas pelaksanaan kebijakan manajemen energi ditentukan oleh tingkat integrasinya dengan sistem informasi, standar teknis, pemasaran dan manajemen keuangan.

Penerapan

Manajemen energi bertujuan untuk mengawasi penggunaan energi di dalam suatu organisasi atau perusahaan. Dalam pengawasannya dilibatkan berbagai disiplin ilmialh lainnya, antara lain keteknika, ekonomi, akuntansi, desain dan riset operasional serta teknologi sistem informasi manajemen. Manajemen energi dapat diterapkan untuk semua jenis perusahaan, industri maupun bangunan.

Hambatan

Manajemen energi dapat dikelola secara buruk jika pengelolanya kekurangan pengetahuan mengenai teknik manajemen energi. Buruknya manajemen energi juga dapat disebabkan oleh kurangnya tradisi yang kuat dalam investasi modal. Dampak yang ditimbulkan ialah pemborosan energi. Di sisi lain, pabrik berukuran besar menggunakan energi dalam jumlah besar. Pabrik besar ini kemudian mengadakan penguatan pabrik dengan meningkatkan fasilitas proses produksi. Sementara itu, sektor industri dengan penggunaan energi yang tidak besar hanya melakukan investasi dengan pengembalian modal sesingkat mungkin. Pabrik berukuran kecil umumnya menunda modifikasi proses produksi dan hanya melakukan pemulihan panas dan pengurangan kerugian akibat biaya energi. Manajemen energi dengan kondisi tersebut menghasilkan perubahan strategi produksi yang drastis sehingga sulit terkendali.

Sumber: https://id.wikipedia.org/

Selengkapnya
Manajemen Energi
« First Previous page 10 of 20 Next Last »