Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 28 Februari 2025
Sebuah loop kontrol adalah unit dasar dari sistem kontrol secara umum dan sistem kontrol industri secara khusus. Loop kontrol terdiri dari sensor proses, fungsi pengontrol, dan elemen kontrol akhir (EKA) yang mengontrol proses untuk menyesuaikan nilai variabel proses yang diukur (PV) agar sama dengan nilai titik set (SP) yang diinginkan secara otomatis.
Ada dua kelas umum dari loop kontrol: loop terbuka dan loop tertutup. Dalam sistem kontrol loop terbuka, tindakan kontrol dari pengontrol tidak bergantung pada variabel proses. Contoh dari ini adalah boiler pemanas sentral yang dikontrol hanya oleh pengatur waktu. Tindakan kontrol adalah menghidupkan atau mematikan boiler. Variabel proses adalah suhu bangunan. Pengontrol ini mengoperasikan sistem pemanasan untuk waktu konstan tanpa memperhatikan suhu bangunan.
Dalam sistem kontrol loop tertutup, tindakan kontrol dari pengontrol bergantung pada variabel proses yang diinginkan dan aktual. Dalam analogi boiler, ini akan menggunakan termostat untuk memantau suhu bangunan, dan memberi umpan balik sinyal untuk memastikan output pengontrol mempertahankan suhu bangunan mendekati yang diatur pada termostat. Pengontrol loop tertutup memiliki loop umpan balik yang memastikan pengontrol memberikan tindakan kontrol untuk mengontrol variabel proses pada nilai yang sama dengan titik set. Oleh karena itu, pengontrol loop tertutup juga disebut sebagai
Sistem Kontrol Loop Terbuka dan Loop Tertutup
Sistem kontrol diklasifikasikan ke dalam dua jenis utama: kontrol loop terbuka (juga dikenal sebagai umpan maju) dan kontrol loop tertutup (juga dikenal sebagai umpan balik). Dalam kontrol loop terbuka, tindakan pengontrol tidak dipengaruhi oleh output proses. Contohnya adalah boiler pemanas sentral yang dikendalikan oleh pengatur waktu, di mana panas diterapkan untuk durasi yang tetap terlepas dari suhu bangunan. Di sini, tindakan kontrol (boiler hidup/mati) tidak disesuaikan berdasarkan suhu bangunan, oleh karena itu tidak memiliki kontrol langsung terhadapnya.
Sebaliknya, kontrol loop tertutup menyesuaikan tindakan kontrol berdasarkan output proses. Misalnya, dalam sistem pemanas dengan termostat yang memantau suhu gedung, pengontrol memastikan suhu gedung sesuai dengan titik setel pada termostat dengan menyesuaikan pemanasan. Pengontrol loop tertutup menggabungkan loop umpan balik untuk mempertahankan output proses pada tingkat yang diinginkan, oleh karena itu mereka juga disebut sebagai pengontrol umpan balik. British Standard Institution mendefinisikan sistem kontrol loop tertutup sebagai sistem yang memiliki umpan balik pemantauan, di mana sinyal deviasi dari umpan balik ini digunakan untuk mengatur tindakan elemen kontrol akhir untuk meminimalkan deviasi.
Contoh yang menggambarkan hal ini adalah sistem cruise control mobil, yang mempertahankan kecepatan konstan yang ditetapkan oleh pengemudi. Dalam sistem loop terbuka, cruise control hanya mengunci posisi throttle, yang menyebabkan variasi kecepatan pada medan yang tidak rata. Sebaliknya, cruise control loop tertutup secara terus menerus membandingkan kecepatan aktual dengan kecepatan yang diinginkan, menyesuaikan throttle untuk meminimalkan deviasi dan mempertahankan kecepatan yang diinginkan. Singkatnya, sistem kontrol loop tertutup memanfaatkan umpan balik untuk terus menyesuaikan tindakan kontrol, memastikan output sistem tetap sesuai dengan referensi yang diinginkan, sementara kontrol loop terbuka tidak memiliki mekanisme umpan balik ini.
Aplikasi Diagram Lingkaran Kontrol
Diagram yang disediakan mengilustrasikan loop kontrol yang terdiri dari satu input Variabel Proses (PV), fungsi kontrol, dan Output Kontrol (CO), yang mengatur tindakan Elemen Kontrol Akhir (FCE) untuk menyesuaikan nilai Variabel yang Dimanipulasi ( MV). Meskipun diagram menggambarkan loop kontrol aliran, diagram juga dapat mewakili parameter lain seperti level, suhu, atau parameter proses apa pun yang memerlukan pengaturan. Dalam skenario ini, fungsi kontrol, yang direpresentasikan sebagai tipe perantara seperti pengontrol PID, dapat menghasilkan rentang sinyal keluaran dari 0-100%, sehingga memungkinkan modulasi kontinu daripada kontrol hidup/mati sederhana. Meskipun dalam hal ini, PV dan MV identik karena keduanya dipasang secara seri di dalam pipa, dalam pengaturan yang berbeda, PV dapat mewakili variabel seperti ketinggian tangki, sedangkan MV akan mengatur aliran ke dalam tangki
Contoh loop kendali industri tunggal; menunjukkan kontrol aliran proses yang dimodulasi secara terus menerus.
Fungsi pengontrol dapat berupa pengontrol diskrit atau blok fungsi dalam sistem kontrol terkomputerisasi, seperti Sistem Kontrol Terdistribusi (DCS) atau Pengontrol Logika yang Dapat Diprogram (PLC). Terlepas dari implementasinya, diagram loop kendali berfungsi sebagai sarana yang mudah dan efektif untuk menggambarkan interaksi antara fungsi kendali dan pembangkit. Biasanya, pada level kendali proses, loop kendali disimbolkan menggunakan singkatan standar dalam Piping and Instrumentation Diagram (P&ID), yang secara komprehensif menggambarkan seluruh elemen pengukuran dan kendali proses berdasarkan diagram alir proses. Pada tingkat rinci diagram sambungan loop kontrol dibuat untuk menunjukkan sambungan listrik dan pneumatik. Hal ini sangat membantu diagnostik dan perbaikan, karena semua koneksi untuk satu fungsi kontrol ada dalam satu diagram.
Identifikasi Peralatan Loop dan Kontrol
Untuk memastikan identifikasi peralatan yang berbeda, setiap loop dan komponennya diberi label menggunakan sistem penandaan, dengan setiap elemen memiliki pengenal tag yang unik. Mengikuti pedoman yang ditetapkan oleh standar seperti ANSI/ISA S5.1 dan ISO 14617-6, identifikasi biasanya terdiri dari hingga lima huruf.
Huruf pertama menunjukkan nilai yang diukur, huruf kedua berfungsi sebagai pengubah, huruf ketiga menunjukkan fungsi pasif/pembacaan, huruf keempat menunjukkan fungsi aktif/keluaran, dan huruf kelima berfungsi sebagai pengubah. Huruf-huruf ini diikuti oleh nomor loop, yang khusus untuk loop tertentu.
Sebagai contoh, penunjukan FIC045 menandakan Flow Indicating Controller dalam loop 045. Kode alfanumerik ini, yang sering disebut sebagai pengenal "tag", menentukan lokasi dan fungsi instrumen di lapangan. Dalam loop yang sama, perangkat lain mungkin membawa tag FT045, yang menunjukkan bahwa perangkat tersebut merupakan pemancar aliran yang beroperasi dalam konteks yang sama.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 28 Februari 2025
Sebuah kontroler loop tertutup atau kontroler umpan balik merupakan sebuah loop kontrol yang memasukkan umpan balik, berbeda dengan kontroler loop terbuka atau kontroler non-umpan balik. Kontroler loop tertutup menggunakan umpan balik untuk mengontrol keadaan atau keluaran dari sebuah sistem dinamis. Nama "loop tertutup" berasal dari jalur informasi dalam sistem: input proses (misalnya, tegangan yang diterapkan pada motor listrik) memiliki efek pada keluaran proses (misalnya, kecepatan atau torsi motor), yang diukur dengan sensor dan diproses oleh kontroler; hasilnya (sinyal kontrol) "diumpankan kembali" sebagai input ke proses, menutup loop.
Pada sistem umpan balik linear, sebuah loop kontrol yang meliputi sensor, algoritma kontrol, dan aktuator diatur dalam upaya untuk mengatur sebuah variabel pada titik set (SP). Contoh sehari-hari adalah kontrol kecepatan pada kendaraan jalan raya; di mana pengaruh eksternal seperti bukit akan menyebabkan perubahan kecepatan, dan pengemudi memiliki kemampuan untuk mengubah kecepatan set yang diinginkan. Algoritma PID dalam kontroler mengembalikan kecepatan sebenarnya ke kecepatan yang diinginkan dengan cara yang optimal, dengan keterlambatan atau overshoot minimal, dengan mengendalikan output daya mesin kendaraan. Sistem kontrol yang mencakup beberapa pemantauan hasil yang ingin mereka capai menggunakan umpan balik dan dapat beradaptasi dengan berbagai keadaan sampai batas tertentu. Sistem kontrol loop terbuka tidak menggunakan umpan balik, dan berjalan hanya dalam cara yang telah diatur sebelumnya.
Kontroler loop tertutup memiliki beberapa keunggulan dibandingkan dengan kontroler loop terbuka:
Dalam beberapa sistem, kontrol loop tertutup dan kontrol loop terbuka digunakan secara bersamaan. Dalam sistem tersebut, kontrol loop terbuka disebut feedforward dan bertujuan untuk lebih meningkatkan kinerja pelacakan referensi. Arsitektur kontroler loop tertutup yang umum adalah kontroler PID.
Loop terbuka dan loop tertutup
Sistem kontrol loop terbuka dan loop tertutup beroperasi secara berbeda dalam mengelola proses atau variabel. Dalam kontrol loop terbuka, tindakan pengontrol tidak dipengaruhi oleh output proses. Contohnya adalah boiler pemanas sentral yang dikendalikan oleh pengatur waktu, di mana panas diterapkan untuk durasi yang ditetapkan terlepas dari suhu bangunan. Di sini, tindakan kontrol (peralihan boiler) tidak secara langsung terkait dengan suhu bangunan, yang menggambarkan kurangnya umpan balik langsung dari kontrol loop terbuka.
Sebaliknya, kontrol loop tertutup mendasarkan tindakannya pada output proses. Dengan menggunakan analogi boiler, hal ini melibatkan termostat yang memantau suhu bangunan, memberikan umpan balik untuk memastikan pengontrol mempertahankan suhu pada tingkat yang diinginkan. Loop umpan balik ini, karakteristik kontrol loop tertutup, menyesuaikan tindakan kontrol agar sesuai dengan input referensi atau titik setel, yang mengarah ke regulasi yang tepat. Dengan demikian, pengontrol loop tertutup juga dikenal sebagai pengontrol umpan balik.
British Standard Institution mendefinisikan sistem kontrol loop tertutup sebagai sistem yang menggabungkan umpan balik pemantauan, di mana sinyal deviasi yang dihasilkan dari umpan balik ini memandu tindakan elemen kontrol akhir untuk meminimalkan deviasi. Demikian pula, Sistem Kontrol Umpan Balik digambarkan sebagai sistem yang mempertahankan hubungan yang ditentukan antara variabel sistem dengan membandingkan fungsi variabel-variabel ini dan menggunakan perbedaannya untuk tujuan kontrol.
Fungsi transfer loop tertutup
The system's output, denoted as y(t), undergoes feedback via a sensor measurement, labeled as F, where it is compared to a reference value, r(t). The controller, denoted as C, then computes the error, e (the difference between the reference and the output), to adjust the inputs, u, to the system being controlled, P. This configuration represents a closed-loop controller or feedback controller.
This setup is known as a single-input-single-output (SISO) control system. However, Multi-Input-Multi-Output (MIMO) systems, which feature multiple inputs and outputs, are also common. In MIMO systems, variables are represented using vectors instead of scalar values. In some cases, particularly with distributed parameter systems, these vectors may be infinite-dimensional, typically involving functions.
Jika kita mengasumsikan pengontrol C, plant P, dan sensor F adalah linier dan tidak bergantung pada waktu (yaitu, elemen-elemen dari fungsi transfer C(s), P(s), dan F(s) tidak bergantung pada waktu), sistem di atas dapat dianalisis menggunakan transformasi Laplace pada variabel-variabelnya. Hal ini memberikan hubungan berikut:
.
Menyelesaikan Y(s) dalam bentuk R(s) akan menghasilkan hasil
.
Ekspresi ini disebut sebagai fungsi transfer loop tertutup sistem. Pembilangnya adalah penguatan maju (loop terbuka) dari r ke y, dan penyebutnya adalah satu ditambah penguatan dalam putaran umpan balik, yang disebut penguatan loop. Jika
, i.e., memiliki norma yang besar untuk setiap nilai s, dan jika
, maka Y(s) kira-kira sama dengan R(s) dan outputnya sangat mirip dengan input referensi.
Kontrol umpan balik PID
Pengontrol proporsional-integral-derivatif (PID) adalah mekanisme umpan balik yang digunakan secara luas dalam sistem kontrol. Kontroler ini beroperasi dengan terus menghitung nilai kesalahan (e(t)) sebagai perbedaan antara setpoint yang diinginkan dan variabel proses yang diukur. Berdasarkan kesalahan ini, pengontrol menerapkan koreksi menggunakan istilah proporsional, integral, dan turunan. Akronim "PID" mengacu pada ketiga istilah ini yang bekerja pada sinyal kesalahan untuk menghasilkan sinyal kontrol.
Berasal dari wawasan teoretis dan aplikasi yang berasal dari tahun 1920-an, pengontrol PID telah digunakan secara luas. Mereka awalnya diimplementasikan dalam pengontrol mekanis, kemudian beralih ke elektronik diskrit, dan akhirnya diintegrasikan ke dalam komputer proses industri. Pengontrol PID berdiri sebagai salah satu desain kontrol umpan balik yang paling umum digunakan.
Jika u(t) adalah sinyal kontrol yang dikirim ke sistem, y(t) adalah keluaran terukur dan r(t) adalah keluaran yang diinginkan, dan e(t) = r(t) − y(t) adalah pelacakan kesalahan, pengontrol PID memiliki bentuk umum
Karakteristik yang diinginkan dari sistem loop tertutup dicapai dengan menyesuaikan tiga parameter: KP, KI, dan KD. Penyesuaian ini biasanya dilakukan secara berulang melalui proses yang dikenal sebagai "penyetelan", sering kali tanpa pengetahuan yang tepat tentang model pabrik. Stabilitas biasanya dapat dicapai hanya dengan menggunakan istilah proporsional. Istilah integral memungkinkan sistem untuk menolak gangguan langkah, yang sering kali merupakan persyaratan penting dalam kontrol proses. Istilah turunan digunakan untuk memberikan redaman atau membentuk respons sistem. Meskipun pengontrol PID banyak digunakan dan mapan, mereka mungkin tidak cocok untuk skenario yang lebih kompleks, terutama dalam kasus sistem MIMO.
Penerapan transformasi Laplace akan menghasilkan persamaan pengontrol PID yang ditransformasikan
dengan fungsi transfer pengontrol PID
Sebagai contoh penyetelan pengontrol PID dalam sistem loop tertutup H(s), pertimbangkan pembangkit orde pertama yang diberikan oleh
dimana A dan TP adalah beberapa konstanta. Output pabrik diumpankan kembali melalui
dimana TF juga merupakan sebuah konstanta. Sekarang jika kita mengatur, KD = KTD, dan
, kita dapat mengekspresikan fungsi transfer pengontrol PID dalam bentuk seri sebagai
Memasukkan P(s), F(s), dan C(s) ke dalam fungsi transfer loop tertutup H(s), kita temukan bahwa dengan menetapkan
H(s) = 1. Dengan penyetelan dalam contoh ini, keluaran sistem mengikuti masukan referensi dengan tepat.
In practical applications, implementing a pure differentiator is not feasible or preferable. This is because it can lead to the amplification of noise and the introduction of resonant modes within the system. As a result, alternative approaches such as employing a phase-lead compensator or using a differentiator with low-pass roll-off are utilized instead.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 28 Februari 2025
Interaksi manusia-komputer (HCI) adalah penelitian dalam desain dan penggunaan teknologi komputer, yang berfokus pada antarmuka antara manusia (pengguna) dan komputer. Para peneliti HCI mengamati cara manusia berinteraksi dengan komputer dan merancang teknologi yang memungkinkan manusia untuk berinteraksi dengan komputer dengan cara yang baru. Perangkat yang memungkinkan interaksi antara manusia dan komputer dikenal sebagai "Human-computer Interface (HCI)".
Sebagai sebuah bidang penelitian, interaksi manusia-komputer berada di persimpangan antara ilmu komputer, ilmu perilaku, desain, studi media, dan beberapa bidang studi lainnya. Istilah ini dipopulerkan oleh Stuart K. Card, Allen Newell, dan Thomas P. Moran dalam buku mereka tahun 1983, The Psychology of Human-Computer Interaction. Penggunaan pertama kali diketahui pada tahun 1975 oleh Carlisle. Istilah ini dimaksudkan untuk menyampaikan bahwa, tidak seperti alat lain yang memiliki kegunaan spesifik dan terbatas, komputer memiliki banyak kegunaan yang sering kali melibatkan dialog terbuka antara pengguna dan komputer. Gagasan dialog menyamakan interaksi manusia-komputer dengan interaksi manusia-ke-manusia: sebuah analogi yang sangat penting untuk pertimbangan teoritis di lapangan.
Pendahuluan
Manusia berinteraksi dengan komputer dalam banyak hal, dan antarmuka antara keduanya sangat penting untuk memfasilitasi interaksi ini. HCI juga terkadang disebut sebagai interaksi manusia-mesin (HMI), interaksi manusia-mesin (MMI), atau interaksi komputer-manusia (CHI). Aplikasi desktop, browser internet, komputer genggam, dan kios komputer menggunakan antarmuka pengguna grafis (GUI) yang lazim saat ini. Antarmuka pengguna suara (VUI) digunakan untuk pengenalan suara dan sistem sintesis, dan antarmuka pengguna multi-modal dan antarmuka pengguna grafis (GUI) yang muncul memungkinkan manusia untuk terlibat dengan agen karakter yang diwujudkan dengan cara yang tidak dapat dicapai dengan paradigma antarmuka lainnya. Pertumbuhan di bidang interaksi manusia-komputer telah menyebabkan peningkatan kualitas interaksi, dan menghasilkan banyak bidang penelitian baru di luarnya. Alih-alih mendesain antarmuka biasa, cabang penelitian yang berbeda berfokus pada konsep multimodalitas daripada unimodalitas, antarmuka adaptif cerdas daripada antarmuka berbasis perintah/tindakan, dan antarmuka aktif daripada antarmuka pasif.
Association for Computing Machinery (ACM) mendefinisikan interaksi manusia-komputer sebagai "sebuah disiplin ilmu yang berhubungan dengan desain, evaluasi, dan implementasi sistem komputasi interaktif untuk penggunaan manusia dan dengan studi tentang fenomena utama yang mengelilinginya". Aspek kunci dari HCI adalah kepuasan pengguna, yang juga disebut sebagai Kepuasan Komputasi Pengguna Akhir. Lebih lanjut dikatakan:
"Karena interaksi manusia-komputer mempelajari manusia dan mesin dalam berkomunikasi, maka interaksi ini mengambil pengetahuan pendukung dari sisi mesin dan manusia. Di sisi mesin, teknik-teknik dalam grafik komputer, sistem operasi, bahasa pemrograman, dan lingkungan pengembangan relevan. Di sisi manusia, teori komunikasi, disiplin ilmu desain grafis dan industri, linguistik, ilmu sosial, psikologi kognitif, psikologi sosial, dan faktor manusia seperti kepuasan pengguna komputer adalah relevan. Dan, tentu saja, metode teknik dan desain juga relevan." Karena sifat HCI yang multidisiplin, orang-orang dengan latar belakang yang berbeda berkontribusi terhadap keberhasilannya.
Antarmuka manusia-mesin yang dirancang dengan buruk dapat menyebabkan banyak masalah yang tidak terduga. Contoh klasiknya adalah kecelakaan Three Mile Island, sebuah kecelakaan akibat ledakan nuklir, di mana investigasi menyimpulkan bahwa desain antarmuka manusia-mesin setidaknya bertanggung jawab atas bencana tersebut. Demikian pula, kecelakaan dalam penerbangan diakibatkan oleh keputusan produsen untuk menggunakan instrumen penerbangan non-standar atau tata letak kuadran throttle: meskipun desain baru diusulkan untuk menjadi lebih unggul dalam interaksi manusia-mesin dasar, pilot telah mendarah daging dengan tata letak "standar". Dengan demikian, ide yang secara konseptual bagus ini memiliki hasil yang tidak diharapkan.
Antarmuka Manusia-komputer
Antarmuka manusia-komputer dapat digambarkan sebagai titik komunikasi antara pengguna manusia dan komputer. Aliran informasi antara manusia dan komputer didefinisikan sebagai lingkaran interaksi. Lingkaran interaksi memiliki beberapa aspek, termasuk:
Sasaran untuk Komputer
Interaksi manusia-komputer mempelajari cara-cara manusia menggunakan atau tidak menggunakan artefak, sistem, dan infrastruktur komputasi. Sebagian besar penelitian di bidang ini berupaya meningkatkan interaksi manusia-komputer dengan meningkatkan kegunaan antarmuka komputer. Bagaimana kegunaan dapat dipahami secara tepat, bagaimana hal tersebut berhubungan dengan nilai-nilai sosial dan budaya lainnya, dan kapan hal tersebut merupakan sifat yang diinginkan dari antarmuka komputer semakin diperdebatkan.
Banyak penelitian di bidang interaksi manusia-komputer yang menarik perhatian:
Visi tentang apa yang ingin dicapai oleh para peneliti di lapangan mungkin berbeda-beda. Ketika mengejar perspektif kognitivis, para peneliti HCI mungkin berusaha menyelaraskan antarmuka komputer dengan model mental yang dimiliki manusia dalam melakukan aktivitasnya. Ketika mengejar perspektif post-kognitivis, para peneliti HCI mungkin berusaha untuk menyelaraskan antarmuka komputer dengan praktik sosial yang ada atau nilai-nilai sosial budaya yang ada.
Para peneliti HCI tertarik untuk mengembangkan metodologi desain, bereksperimen dengan perangkat, membuat prototipe perangkat lunak, dan sistem perangkat keras, mengeksplorasi paradigma interaksi, dan mengembangkan model dan teori interaksi.
Desain
Prinsip-prinsip desain eksperimental berikut ini dipertimbangkan, ketika mengevaluasi antarmuka pengguna saat ini, atau merancang antarmuka pengguna yang baru:
Proses desain berulang diulang hingga tercipta antarmuka yang masuk akal dan ramah pengguna.
Berbagai strategi yang menggambarkan metode untuk desain interaksi manusia-PC telah berkembang sejak konsepsi bidang ini pada tahun 1980-an. Sebagian besar filosofi perencanaan berasal dari model bagaimana klien, pencetus, dan kerangka kerja khusus berinteraksi. Teknik awal memperlakukan prosedur psikologis klien sebagai sesuatu yang tidak mengejutkan dan dapat diukur dan mendorong spesialis rencana untuk melihat ilmu subjektif untuk menetapkan zona, (misalnya, memori dan pertimbangan) ketika menyusun UI. Model masa kini, secara umum, berpusat pada masukan dan diskusi yang stabil antara klien, kreator, dan spesialis dan mendorong kerangka kerja khusus untuk dilipat dengan jenis-jenis pertemuan yang dibutuhkan klien, dibandingkan dengan membungkus pengalaman pengguna di sekitar kerangka kerja yang sudah jadi.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 28 Februari 2025
Pembangkitan listrik melibatkan konversi sumber energi primer menjadi tenaga listrik, sebuah langkah penting sebelum didistribusikan ke pengguna akhir atau penyimpanan. Karena listrik yang dapat digunakan tidak tersedia secara alami, listrik harus diproduksi melalui berbagai metode. Produksi ini biasanya terjadi di pembangkit listrik, yang juga dikenal sebagai pembangkit listrik, di mana generator elektromekanis mengubah bentuk energi lain menjadi listrik. Umumnya, hal ini dicapai melalui mesin panas yang ditenagai oleh pembakaran, fisi nuklir, air yang mengalir, angin, fotovoltaik surya, atau energi panas bumi. Pendekatan inovatif, seperti mengekstraksi energi dari reaksi fusi menggunakan medan magnet yang kuat, juga sedang dieksplorasi.
Untuk memitigasi perubahan iklim, transisi dari pembangkit listrik tenaga batu bara dan gas, serta upaya untuk menangkap emisi gas rumah kaca, sangatlah penting. Transformasi ini membutuhkan peningkatan yang signifikan dalam pembangkit listrik tenaga surya dan angin, yang didorong oleh meningkatnya permintaan listrik dari sektor-sektor seperti transportasi, perumahan, dan sektor industri. Yang menggembirakan, tren terbaru menunjukkan bahwa pasokan listrik global mendekati puncak emisi CO2 karena penyebaran teknologi tenaga surya dan angin yang semakin meluas.
Evolusi Pembangkit Listrik: Dari Penemuan Faraday hingga Sistem Tenaga Listrik Modern
Prinsip-prinsip dasar pembangkitan listrik ditemukan pada awal abad ke-19 oleh ilmuwan Inggris, Michael Faraday. Dia memperkenalkan sebuah metode, yang masih digunakan sampai sekarang, yang menghasilkan listrik melalui gerakan lingkaran kawat, yang dikenal sebagai cakram Faraday, di antara kutub-kutub magnet. Munculnya transmisi daya arus bolak-balik (AC), yang difasilitasi oleh transformator daya untuk mentransmisikan listrik pada tegangan tinggi dengan kerugian minimal, menandai kelayakan ekonomi pembangkit listrik pusat.
Produksi listrik komersial dimulai dengan penyambungan dinamo ke turbin hidrolik, yang menandai Revolusi Industri Kedua. Para pelopor seperti Thomas Alva Edison dan Nikola Tesla memelopori inovasi dalam pembangkit tenaga listrik, yang merevolusi berbagai industri. Sebelum era ini, produksi listrik hanya mengandalkan reaksi kimia atau sel baterai, terutama untuk telegrafi.
Pada tahun 1882, pembangkit listrik pusat meresmikan era pembangkitan listrik ketika mesin uap yang terhubung ke dinamo di Stasiun Pearl Street di New York menghasilkan listrik arus searah (DC) untuk penerangan umum. Inovasi ini dengan cepat menyebar ke seluruh dunia, menggantikan lampu jalan berbahan bakar gas dan berkembang biak ke gedung-gedung publik, bisnis, dan sistem transportasi.
Awalnya ditenagai oleh air atau batu bara, pembangkit listrik saat ini menggunakan beragam sumber energi termasuk nuklir, gas alam, pembangkit listrik tenaga air, angin, minyak, matahari, pasang surut, dan energi panas bumi.
Tahun 1880-an menjadi saksi lonjakan popularitas listrik dengan diperkenalkannya bola lampu pijar, yang dipelopori oleh Joseph Swan dan Thomas Edison. Kemajuan teknologi kelistrikan selanjutnya pada akhir abad ke-19 mengintegrasikan listrik ke dalam kehidupan sehari-hari, mendorong permintaan listrik rumah tangga dan mendorong para pengusaha untuk mendirikan perusahaan listrik umum pertama.
Distribusi listrik awal melibatkan perusahaan independen, dengan konsumen membeli listrik langsung dari produsen. Kemajuan teknologi, seperti turbin uap, secara signifikan meningkatkan efisiensi dan keekonomisan pembangkit listrik. Pembangkit listrik berskala besar ini memainkan peran penting dalam evolusi menuju pembangkit listrik terpusat, yang menjadi tulang punggung sistem tenaga listrik modern.
Pada pertengahan abad ke-20, perusahaan listrik mulai menggabungkan jaringan distribusi mereka, sementara munculnya transmisi listrik jarak jauh memfasilitasi operasi terkoordinasi di antara pembangkit listrik. Operator sistem regional didirikan untuk memastikan stabilitas dan keandalan. Upaya elektrifikasi awalnya menargetkan daerah perkotaan di Eropa Utara dan Amerika Utara, secara bertahap meluas ke daerah pedesaan pada tahun 1930-an.
Metode Pembangkitan Listrik: Mengubah Energi menjadi Tenaga
Berbagai metode digunakan untuk mengubah berbagai bentuk energi menjadi energi listrik, yang melayani pembangkitan skala utilitas dan aplikasi khusus. Metode yang dominan mencakup generator listrik berputar, sistem fotovoltaik, dan baterai, dengan pendekatan lain seperti triboelektrik, piezoelektrik, efek termoelektrik, dan betavoltaik yang melayani tujuan tertentu.
Perangkat ini, berdasarkan hukum Faraday, adalah alat utama pembangkit listrik, mengubah energi kinetik menjadi energi listrik melalui induksi elektromagnetik. Dengan memutar magnet dalam loop tertutup bahan penghantar, seperti kawat tembaga, energi mekanik diubah menjadi listrik, yang merupakan tulang punggung pembangkit listrik komersial.
Proses elektrokimia secara langsung mengubah energi kimia menjadi listrik, misalnya baterai. Meskipun sel primer seperti baterai seng-karbon berfungsi sebagai sumber daya langsung, sel sekunder yang dapat diisi ulang digunakan untuk tujuan penyimpanan. Sel bahan bakar, sebuah sistem elektrokimia terbuka, mengekstraksi daya dari bahan bakar alami atau sintesis, sehingga menawarkan solusi energi serbaguna.
Sel surya memanfaatkan efek fotovoltaik untuk mengubah cahaya menjadi energi listrik. Panel-panel ini secara langsung mengubah sinar matahari menjadi listrik DC, dengan inverter daya yang memungkinkan konversi menjadi listrik AC bila diperlukan. Meskipun tenaga surya memanfaatkan sinar matahari yang berlimpah, namun biaya panelnya masih relatif mahal. Namun, kemajuan dalam efisiensi dan manufaktur sel surya silikon, ditambah dengan permasalahan lingkungan, telah mendorong penerapan panel surya, khususnya di daerah terpencil dan sebagai sumber listrik tambahan untuk rumah dan bisnis.
Setiap metode berkontribusi terhadap beragamnya lanskap pembangkitan listrik, dengan kemajuan berkelanjutan yang mendorong peningkatan efisiensi dan perluasan penerapan di seluruh dunia.
Kepedulian Lingkungan dalam Pembangkitan Listrik
Perbedaan pembangkit listrik antar negara berkontribusi terhadap dampak lingkungan yang berbeda-beda. Perancis hanya mengandalkan 10% kebutuhan listriknya pada bahan bakar fosil, sementara AS dan Tiongkok jauh lebih bergantung pada bahan bakar fosil, masing-masing sebesar 70% dan 80%. Kebersihan lingkungan dari listrik bergantung pada sumbernya, dengan kebocoran metana dan emisi karbon dioksida dari pembangkit listrik berbasis bahan bakar fosil menjadi kontributor signifikan terhadap emisi gas rumah kaca di seluruh dunia. Di AS, pembakaran bahan bakar fosil untuk pembangkit listrik merupakan sumber utama emisi sulfur dioksida, komponen utama hujan asam, serta NOx, karbon monoksida, dan materi partikulat.
Badan Energi Internasional (IEA) menekankan perlunya pembangkit listrik rendah karbon untuk mencapai 85% keluaran listrik global pada tahun 2040 untuk memitigasi dampak perubahan iklim. Organisasi seperti Energy Impact Center (EIC) dan Komisi Ekonomi PBB untuk Eropa (UNECE) menganjurkan perluasan energi nuklir dan terbarukan untuk mencapai tujuan ini. Tenaga nuklir dipandang sebagai metode penting untuk dekarbonisasi pembangkitan listrik, karena dapat menggerakkan teknologi seperti penangkapan udara langsung untuk menghilangkan emisi karbon dari atmosfer. Namun, masih ada kekhawatiran mengenai limbah nuklir dan risiko keselamatan yang terkait dengan tenaga nuklir.
Metode pembangkit listrik terpusat, khususnya yang melibatkan batu bara dan gas, mempunyai dampak negatif yang signifikan terhadap lingkungan. Penambangan batu bara mengganggu lahan yang luas dan membatasi potensi penggunaan lahan, sementara ekstraksi gas alam melepaskan metana, salah satu gas rumah kaca yang kuat. Terlepas dari tantangan-tantangan ini, pembangkit listrik tenaga batu bara dan gas tetap menjadi kontributor utama emisi gas rumah kaca, dengan emisi per unit listrik yang dihasilkan jauh lebih tinggi dibandingkan metode lainnya.
Peralatan Pembangkit Listrik: Turbin dan Penggerak Utama
Generator listrik, yang berasal dari penemuan induksi elektromagnetik pada tahun 1830-an, memainkan peran penting dalam produksi listrik. Biasanya, penggerak utama, seperti mesin atau turbin, menggerakkan medan magnet yang berputar melewati kumparan kawat yang tidak bergerak, mengubah energi mekanik menjadi listrik melalui induksi elektromagnetik. Sel surya fotovoltaik dan sel bahan bakar merupakan satu-satunya pengecualian untuk produksi listrik yang bergantung pada generator pada skala komersial.
Turbin: Hampir semua tenaga listrik komersial di seluruh dunia dihasilkan dengan menggunakan turbin, yang digerakkan oleh angin, air, uap, atau gas yang terbakar. Turbin menggerakkan generator, mengubah energi mekanik menjadi energi listrik. Berbagai metode memanfaatkan energi mekanik, termasuk mesin panas, tenaga air, angin, dan pasang surut. Mesin panas sebagian besar menggerakkan pembangkit listrik, terutama didorong oleh pembakaran bahan bakar fosil, ditambah dengan fisi nuklir dan sumber-sumber terbarukan. Turbin uap, yang dipelopori oleh Sir Charles Parsons pada tahun 1884, saat ini menyumbang sekitar 80% dari pembangkit tenaga listrik global, dengan memanfaatkan beragam sumber panas. Jenis turbin meliputi:
Turbin dapat menggunakan cairan transfer panas alternatif selain uap, dengan siklus berbasis karbon dioksida superkritis yang menawarkan efisiensi yang lebih tinggi, pertukaran panas yang lebih cepat, dan infrastruktur yang lebih sederhana. Selain itu, generator yang lebih kecil, yang ditenagai oleh mesin bensin atau diesel, berfungsi sebagai sumber daya cadangan atau sumber daya utama di daerah terpencil.
Teknologi Pembangkit Listrik
Sumber Energi Terpusat: Pembangkit listrik besar sangat penting dalam menghasilkan listrik dalam jumlah besar untuk didistribusikan secara luas kepada konsumen. Sebagian besar pembangkit listrik ini, yang disebut pembangkit listrik tenaga panas, menggunakan bahan bakar untuk memanaskan uap, menghasilkan gas bertekanan yang memutar turbin untuk menghasilkan listrik. Metode produksi energi konvensional ini bergantung pada berbagai teknologi seperti batu bara, gas, nuklir, tenaga surya, dan tenaga angin.
Pembangkit listrik fotovoltaik, yang dikenal sebagai taman surya atau pembangkit listrik tenaga surya, adalah sistem yang terhubung dengan jaringan yang luas yang dirancang untuk memasok listrik bagi para pedagang. Mereka memanfaatkan efek fotovoltaik, mengubah sinar matahari menjadi listrik arus searah (DC). Meskipun tenaga surya terkonsentrasi adalah teknologi pembangkit listrik tenaga surya skala besar lainnya, teknologi fotovoltaik telah mendapatkan penggunaan yang lebih luas karena kelebihannya. Berdasarkan statistik terbaru, sekitar 97% kapasitas tenaga surya skala utilitas menggunakan teknologi fotovoltaik.
Ladang angin, yang terdiri dari sekelompok turbin angin, menghasilkan listrik dengan memanfaatkan energi angin. Ladang angin ini memiliki ukuran yang bervariasi dan dapat berlokasi di darat maupun lepas pantai. Meskipun tenaga angin diakui sebagai sumber energi hijau dengan dampak lingkungan yang minimal, terdapat kritik mengenai gangguan visual dan perubahan lanskap. Meskipun demikian, tenaga angin tetap menjadi komponen penting dari portofolio energi terbarukan.
Pembangkit listrik tenaga batu bara membakar batu bara untuk menghasilkan listrik, yang merupakan bagian penting dari produksi listrik global. Namun, pembangkit listrik tenaga batu bara juga menimbulkan masalah lingkungan dan kesehatan karena polusi udara dan emisi gas rumah kaca, yang berkontribusi besar terhadap perubahan iklim. Berbagai upaya sedang dilakukan untuk beralih dari pembangkit listrik tenaga batu bara ke alternatif energi yang lebih bersih.
Pembangkit listrik tenaga gas alam membakar gas alam untuk menghasilkan gas bertekanan, menggerakkan turbin untuk menghasilkan listrik. Meskipun lebih efisien daripada pembangkit listrik tenaga batu bara, pembangkit listrik tenaga gas alam tetap berkontribusi terhadap perubahan iklim melalui emisi karbon dioksida. Selain itu, pelepasan metana selama ekstraksi gas juga berdampak pada lingkungan.
Pembangkit listrik tenaga nuklir menghasilkan listrik melalui fisi nuklir, memanfaatkan uranium sebagai bahan bakar. Meskipun tenaga nuklir menyediakan sebagian besar listrik global, masih ada kekhawatiran mengenai limbah radioaktif dan potensi kecelakaan. Terlepas dari risikonya, tenaga nuklir tetap menjadi sumber energi yang signifikan di banyak negara.
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 28 Februari 2025
Perangkat lunak sistem adalah perangkat lunak yang dirancang untuk menyediakan platform bagi perangkat lunak lain. Contoh perangkat lunak sistem termasuk sistem operasi (OS) (seperti macOS, Linux, Android, dan Microsoft Windows). Perangkat lunak aplikasi adalah perangkat lunak yang memungkinkan pengguna untuk melakukan tugas-tugas yang berorientasi pada pengguna seperti membuat dokumen teks, bermain atau mengembangkan game, membuat presentasi, mendengarkan musik, menggambar, atau menjelajahi web. Contohnya adalah: perangkat lunak ilmu komputasi, mesin permainan, mesin pencari, otomasi industri, dan perangkat lunak sebagai aplikasi layanan.
Pada akhir tahun 1940-an, perangkat lunak aplikasi ditulis secara khusus oleh pengguna komputer agar sesuai dengan perangkat keras dan kebutuhan mereka. Perangkat lunak sistem biasanya dipasok oleh produsen perangkat keras komputer dan dimaksudkan untuk digunakan oleh sebagian besar atau semua pengguna sistem tersebut. Banyak sistem operasi yang sudah dipaketkan dengan perangkat lunak aplikasi dasar. Perangkat lunak semacam itu tidak dianggap sebagai perangkat lunak sistem jika dapat dihapus tanpa memengaruhi fungsi perangkat lunak lain. Contoh perangkat lunak tersebut adalah permainan dan alat pengeditan sederhana yang disertakan dengan Microsoft Windows, atau rantai alat pengembangan perangkat lunak yang disertakan dengan banyak distribusi Linux.
Beberapa area abu-abu antara sistem dan perangkat lunak aplikasi adalah peramban web yang terintegrasi secara mendalam ke dalam sistem operasi seperti Internet Explorer pada beberapa versi Microsoft Windows, atau ChromeOS di mana peramban berfungsi sebagai satu-satunya antarmuka pengguna dan satu-satunya cara untuk menjalankan program (dan peramban web lain sebagai penggantinya). Perangkat lunak berbasis cloud adalah contoh lain dari perangkat lunak sistem, yang menyediakan layanan kepada klien perangkat lunak (biasanya browser web atau aplikasi JavaScript yang berjalan di browser web), bukan kepada pengguna secara langsung. Perangkat lunak ini dikembangkan dengan menggunakan metodologi pemrograman sistem dan bahasa pemrograman sistem.
Sistem operasi atau program kontrol sistem
Sistem operasi (contohnya adalah Microsoft Windows, macOS, Linux, dan z/OS), memungkinkan bagian-bagian komputer untuk bekerja sama dengan melakukan tugas-tugas seperti mentransfer data antara memori dan disk atau merender output ke perangkat tampilan. Kernel menyediakan platform (lapisan abstraksi perangkat keras) untuk menjalankan perangkat lunak sistem dan perangkat lunak aplikasi tingkat tinggi.
Kernel adalah bagian inti dari sistem operasi yang mendefinisikan antarmuka pemrograman aplikasi untuk program aplikasi (termasuk beberapa perangkat lunak sistem) dan antarmuka ke driver perangkat Driver perangkat dan firmware perangkat, termasuk BIOS komputer, menyediakan fungsionalitas dasar untuk mengoperasikan dan mengontrol perangkat keras yang tersambung atau terpasang di komputer.
Antarmuka pengguna berinteraksi dengan komputer. Antarmuka ini dapat berupa antarmuka baris perintah (CLI) atau, sejak tahun 1980-an, antarmuka pengguna grafis (GUI). Ini adalah bagian dari sistem operasi yang berinteraksi langsung dengan pengguna, ini dianggap sebagai aplikasi dan bukan perangkat lunak sistem.
Perangkat lunak utilitas atau program pendukung sistem
Beberapa organisasi menggunakan istilah pemrogram sistem untuk menggambarkan fungsi pekerjaan yang lebih tepat disebut administrator sistem. Perangkat lunak yang digunakan oleh para karyawan ini kemudian disebut perangkat lunak sistem. Perangkat lunak utilitas ini membantu menganalisis, mengonfigurasi, mengoptimalkan, dan memelihara komputer, seperti perlindungan terhadap virus. Istilah perangkat lunak sistem juga dapat mencakup alat pengembangan perangkat lunak (seperti kompiler, penghubung, atau debugger).
Disadur dari: en.wikipedia.org
Teknik Elektro
Dipublikasikan oleh Sirattul Istid'raj pada 28 Februari 2025
Arsitektur informasi (IA) mengacu pada pengaturan dan penataan informasi secara sistematis dalam lingkungan digital bersama. Hal ini mencakup pengaturan strategis dan pelabelan situs web, intranet, komunitas online, dan perangkat lunak untuk meningkatkan kegunaan dan memudahkan pengambilan informasi. IA menggabungkan prinsip-prinsip dari desain, arsitektur, dan ilmu informasi untuk mengoptimalkan lanskap digital. Hal ini sering kali melibatkan pembuatan model atau kerangka kerja untuk mengelola sistem informasi yang kompleks, seperti sistem perpustakaan dan pengembangan basis data.
Definisi Arsitektur informasi
Arsitektur informasi (IA) mencakup berbagai pengertian dalam berbagai cabang sistem dan teknologi informasi:
Perdebatan
Definisi arsitektur informasi menghadapi tantangan karena keberadaannya di berbagai bidang. Dalam desain sistem, IA adalah komponen arsitektur perusahaan yang berhubungan dengan aspek informasi dari struktur perusahaan. Namun, mendefinisikan IA menjadi lebih diperdebatkan dalam ranah informasi online, khususnya situs web. Ada perdebatan yang dikenal sebagai "debat IA besar - IA kecil", di mana beberapa orang melihat IA sebagai penerapan utama ilmu informasi pada desain web (IA kecil), sementara yang lain melihatnya sebagai aspek yang lebih luas dari pengalaman pengguna dan kegunaan (IA besar).
Berikut ini adalah beberapa tokoh penting dalam bidang arsitektur informasi
Sumber: en.wikipedia.org