Feasible Region
Dalam optimasi matematis, wilayah, himpunan, ruang pencarian, atau ruang solusi yang layak adalah himpunan semua titik yang mungkin (kumpulan nilai dari variabel yang dipilih) dari suatu masalah optimasi yang memenuhi batasan masalah tersebut. , yang mungkin mengandung kesenjangan, persamaan dan ketidaksetaraan. pembatasan bilangan bulat. Ini adalah rangkaian solusi pertama yang mungkin untuk mengatasi masalah tersebut sebelum mempersempit kelompok kandidat.
Misalnya, pertimbangkan masalah meminimalkan fungsi sehubungan dengan variabel dan , tunduk pada dan Di sini himpunan layak adalah himpunan pasangan (x,y) yang nilai x paling sedikit 1 dan paling banyak 10 dan nilai y paling sedikit 5 dan paling banyak 12. Himpunan masalah yang layak terpisah dari fungsi tujuan, yang menyatakan kriteria yang akan dioptimalkan dan yang dalam contoh di atas adalah
Dalam banyak permasalahan, himpunan layak mencerminkan batasan bahwa satu atau lebih variabel tidak boleh negatif. Untuk permasalahan pemrograman yang hanya menggunakan bilangan bulat, himpunan bilangan bulat (atau bagiannya) adalah himpunan yang diperbolehkan. Dalam permasalahan program linier, himpunan layak adalah politop cembung: wilayah ruang multidimensi yang batasnya dibentuk oleh bidang hiper dan simpulnya adalah simpul.
Kepuasan kendala adalah proses menemukan titik di wilayah yang layak.
Daerah fisibel tertutup dari masalah program linier dengan tiga variabel adalah polihedron cembung.
Himpunan layak cembung
Dalam masalah pemrograman linier, serangkaian kendala linier menghasilkan wilayah layak cembung dari nilai-nilai yang mungkin untuk variabel-variabel tersebut. Dalam kasus dua variabel daerah ini berbentuk poligon sederhana cembung.
Himpunan layak cembung adalah himpunan yang ruas garis yang menghubungkan dua titik layak hanya melalui titik layak lainnya dan tidak melalui suatu titik di luar himpunan layak tersebut. Himpunan layak cembung muncul dalam banyak jenis masalah, termasuk masalah program linier, dan sangat menarik karena masalah dengan fungsi tujuan konveks yang dimaksimalkan umumnya lebih mudah diselesaikan jika ada solusi cembung. set yang diizinkan, dan setiap maksimum lokal juga merupakan maksimum global.
Tidak ada set yang layak
Jika kendala dari masalah optimasi saling bertentangan, tidak ada titik yang memenuhi semua kendala dan dengan demikian wilayah yang layak adalah himpunan nol. Dalam hal ini masalah tidak memiliki solusi dan dikatakan tidak layak.
Himpunan layak terbatas (atas) dan himpunan layak tak terbatas (bawah). Set di bagian bawah berlanjut selamanya ke arah kanan.
Himpunan layak terbatas dan tidak terbatas
Himpunan layak terbatas (atas) dan himpunan layak tak terbatas (bawah). Set di bagian bawah berlanjut selamanya ke arah kanan.
Himpunan yang dapat diwujudkan bisa terbatas atau tidak terbatas. Misalnya, himpunan nilai realisasi yang ditentukan oleh himpunan batasan {x ≥ 0, y ≥ 0} tidak terhingga karena tidak ada batasan jarak yang dapat ditempuh dalam arah tertentu selama berada dalam rentang nilai realisasi tetap. Sebaliknya, himpunan kemungkinan yang dibentuk oleh himpunan batasan {x ≥ 0, y ≥ 0, x + 2y ≤ 4} adalah terbatas karena amplitudo pergerakan ke segala arah dibatasi oleh batasan tersebut.
Untuk masalah program linier dengan n variabel, kondisi yang diperlukan tetapi tidak cukup untuk membatasi himpunan kemungkinan adalah jumlah batasan paling sedikit n + 1 (seperti yang ditunjukkan pada contoh di atas).
Ketika himpunan kemungkinan tidak terbatas, optimalitas mungkin terjadi atau tidak tergantung pada spesifikasi fungsi tujuan.Misalnya, jika wilayah layak ditentukan oleh himpunan batasan {x ≥ 0, y ≥ 0}, maka permasalahan pemaksimalan x + y adalah suboptimal karena setiap solusi yang mungkin dapat diperbaiki dengan meningkatkan x atau y; Namun jika permasalahannya meminimalkan x + y, maka terdapat permasalahan optimal (terutama pada (x, y) = (0, 0)).
Solusi kandidat
Dalam optimasi dan cabang matematika lainnya, serta dalam algoritma pencarian (cabang ilmu komputer), solusi kandidat adalah anggota dari himpunan solusi yang mungkin dalam domain yang mungkin dari suatu masalah tertentu. Solusi kandidat tidak harus berupa solusi yang mungkin atau masuk akal terhadap suatu masalah, namun hanya solusi yang memenuhi semua batasan; yaitu, dalam serangkaian solusi yang mungkin. Algoritma untuk menyelesaikan berbagai jenis masalah optimasi sering kali mereduksi himpunankemungkinan solusi menjadi subkumpulan solusi layak yang poin-poinnya tetap menjadi solusi layak, sementara solusi lain yang mungkin kemudian dikeluarkan sebagai kandidat.
Ruang semua kandidat solusi sebelum mengecualikan titik layak disebut wilayah layak, himpunan layak, ruang pencarian, atau ruang solusi. Ini adalah himpunan semua solusi yang mungkin yang memenuhi kondisi batas masalah. Kepuasan Kendala adalah proses menemukan titik-titik dalam suatu himpunan yang mungkin.
Algoritma genetika
Dalam kasus algoritma genetik thm, solusi kandidat adalah individu dalam populasi yang dikembangkan oleh algoritma.
Kalkulus
Dalam kalkulus, pencarian solusi optimal dilakukan dengan menggunakan uji turunan pertama: turunan pertama dari fungsi yang dioptimalkan ditetapkan sama dengan nol, dan nilai apa pun dari variabel terpilih yang memenuhi persamaan ini diperlakukan sebagai kandidat solusi (sementara mereka yang tidak dikecualikan dari daftar peringkat). Solusi potensial mungkin bukan solusi aktual dalam beberapa hal. Pertama, ini mungkin merupakan titik terendah ketika bertujuan untuk mencapai titik tertinggi (atau sebaliknya), dan kedua, mungkin tidak memberikan titik terendah atau tertinggi pada, melainkan sebuah pelana atau titik balik ketika ada jeda sementara dalam pertumbuhan lokal. . Jika tidak, fungsinya akan hilang. Solusi kandidat tersebut dapat dikecualikan dengan uji turunan kedua, yang pemenuhannya cukup untuk membuat solusi kandidat setidaknya optimal secara lokal.Ketiga, solusi potensial mungkin optimal secara lokal namun tidak optimal secara global.
Dalam mengambil antiturunan dari monomial bentuk solusi kandidat menggunakan rumus kuadratur Cavalieri adalah Kandidat solusi ini sebenarnya benar kecuali jika
Pemrograman linier
Serangkaian kendala pemrograman linier pada dua variabel menghasilkan wilayah nilai yang mungkin untuk variabel tersebut. Masalah dua variabel yang dapat diselesaikan akan memiliki wilayah layak dalam bentuk poligon sederhana cembung jika dibatasi. Dalam algoritma yang menguji titik-titik yang layak secara berurutan, setiap titik yang diuji pada gilirannya merupakan solusi kandidat.
Dalam metode simpleks penyelesaian masalah program linier, sebuah simpul dari politop yang layak dipilih sebagai kandidat solusi awal dan diuji optimalitasnya; Jika ditolak sebagai titik optimal, simpul-simpul tetangga dianggap sebagai kandidat solusi berikutnya. Proses ini berlanjut hingga solusi yang diusulkan dianggap optimal.
Disadur dari: en.wikipedia.org