Transformasi data merupakan inti dari komputasi, yang berfungsi sebagai saluran yang melaluinya informasi berevolusi dari satu format atau struktur ke format lainnya. Proses ini merupakan bagian integral dari berbagai tugas yang berhubungan dengan data, termasuk integrasi data, penyimpanan data, dan integrasi aplikasi.
Kompleksitas transformasi data dapat sangat bervariasi, tergantung pada tingkat perubahan yang diperlukan antara data sumber dan data target. Sementara beberapa transformasi mungkin sangat mudah, yang lain membutuhkan manipulasi yang rumit. Biasanya, transformasi data memadukan langkah-langkah manual dan otomatis untuk mencapai hasil yang diinginkan. Alat dan teknologi yang digunakan untuk transformasi data sangat beragam, yang mencerminkan beragamnya format, struktur, kompleksitas, dan volume data yang mengalami transformasi.
Salah satu bentuk transformasi data yang penting adalah penyusunan ulang data master. Di sini, seluruh basis data mengalami transformasi atau penyusunan ulang tanpa perlu mengekstrak data. Dalam database yang dirancang dengan baik, semua data dihubungkan secara langsung atau tidak langsung ke sekumpulan tabel database master melalui batasan kunci asing.
Dengan menyusun ulang tabel-tabel basis data master ini dengan indeks unik yang berbeda, baik data yang terkait secara langsung maupun tidak langsung juga diubah. Meskipun ada transformasi ini, bentuk asli data tetap dapat diakses melalui indeks unik yang ada. Sangat penting untuk menjalankan penyusunan ulang database ini dengan cermat untuk menghindari dampak buruk pada arsitektur perangkat lunak.Dalam skenario di mana pemetaan data terjadi secara tidak langsung melalui model data yang memediasi, proses ini disebut sebagai mediasi data.
Proses Perjalanan Transformasi Data
Transformasi data adalah proses penting dalam bidang pengelolaan data, yang mencakup beberapa langkah penting yang disesuaikan dengan kompleksitas transformasi yang ada. Mari kita selidiki setiap langkah untuk memahami signifikansinya dalam narasi transformasi yang lebih luas.
1. Penemuan Data:
Perjalanannya dimulai dengan penemuan data, di mana alat pembuatan profil atau skrip manual mengungkap seluk-beluk struktur dan karakteristik data. Langkah mendasar ini meletakkan dasar untuk memahami bagaimana data harus dibentuk dan dibentuk agar selaras dengan tujuan transformasi.
2. Pemetaan Data:
Di sini, masing-masing bidang menjalani pemetaan, modifikasi, penggabungan, pemfilteran, atau agregasi untuk membentuk hasil akhir. Biasanya dipelopori oleh pengembang atau analis teknis yang berpengalaman dalam teknologi transformasi, pemetaan data menetapkan cetak biru perjalanan transformasi.
3. Pembuatan Kode:
Prosesnya beralih ke pembuatan kode, di mana instruksi yang dapat dieksekusi, seperti SQL, Python, atau R, dibuat berdasarkan aturan pemetaan yang telah ditentukan sebelumnya. Teknologi transformasi memainkan peran penting di sini, memanfaatkan metadata atau definisi yang disediakan oleh pengembang untuk menghasilkan kode yang diperlukan.
4. Eksekusi Kode:
Dengan kode di tangan, saatnya untuk mengeksekusi. Baik terintegrasi secara mulus dalam alat transformasi atau memerlukan intervensi manual dari pengembang, eksekusi kode menghidupkan proses transformasi, mengarahkan data menuju kondisi yang diharapkan.
5. Tinjauan Data:
Pengembaraan transformasi mencapai puncaknya pada peninjauan data, yang hasilnya diperiksa dengan cermat untuk memastikan keselarasan dengan tujuan transformasi. Biasanya dipimpin oleh pengguna bisnis atau pengguna akhir, langkah ini mengungkap anomali atau kesalahan apa pun, menandakan perbaikan atau persyaratan baru bagi pengembang atau analis.
Menjelajahi Transformasi Data: Batch vs Interaktif
Transformasi data telah lama menjadi proses fundamental dalam dunia manajemen data, dan hadir dalam dua bentuk utama: batch dan interaktif. Mari kita pelajari setiap jenisnya untuk memahami signifikansi dan implikasinya dalam ranah integrasi data.
- Transformasi Data Batch:
Secara tradisional, transformasi data telah beroperasi sebagai proses massal atau batch, di mana pengembang atau ahli teknis menulis kode atau menentukan aturan transformasi dalam alat integrasi data. Aturan-aturan ini kemudian dieksekusi pada volume data yang besar, mengikuti serangkaian langkah linier yang telah ditentukan sebelumnya. Transformasi data batch berfungsi sebagai tulang punggung berbagai teknologi integrasi data, termasuk pergudangan data, migrasi, dan integrasi aplikasi.
- Manfaat dan Keterbatasan:
Meskipun transformasi data batch telah membuktikan nilainya selama bertahun-tahun, transformasi data batch memiliki manfaat dan keterbatasan. Di satu sisi, hal ini memungkinkan pemrosesan volume data yang sangat besar, memberi makan aplikasi penting dan penyimpanan data. Akan tetapi, hal ini juga menimbulkan tantangan. Sebagai contoh, pengguna bisnis sering kali tidak berperan langsung dalam proses transformasi, yang menyebabkan potensi salah tafsir terhadap persyaratan dan bertambahnya waktu untuk mendapatkan solusi. Hal ini memicu kebutuhan akan kelincahan dan layanan mandiri dalam integrasi data, yang bertujuan untuk memberdayakan pengguna agar dapat mentransformasi data secara interaktif.
- Transformasi Data Interaktif:
Masukkan transformasi data interaktif (IDT), sebuah kemampuan baru yang merevolusi lanskap transformasi data. Tidak seperti transformasi batch, IDT memungkinkan analis bisnis dan pengguna untuk berinteraksi langsung dengan kumpulan data yang besar melalui antarmuka visual yang intuitif. Antarmuka ini memfasilitasi pemahaman, koreksi, dan manipulasi data melalui interaksi sederhana seperti mengklik atau memilih elemen data. Perusahaan seperti Trifacta, Alteryx, dan Paxata menawarkan alat transformasi data interaktif, mengabstraksikan kerumitan teknis dan memberdayakan pengguna untuk mengontrol data mereka.
- Manfaat dan Implikasi:
Solusi transformasi data interaktif menyederhanakan proses persiapan data, mengurangi waktu yang dibutuhkan untuk mentransformasi data dan menghilangkan kesalahan yang merugikan dalam interpretasi. Dengan menghilangkan pengembang dari persamaan, sistem ini menempatkan kekuatan di tangan pengguna bisnis dan analis, memungkinkan mereka untuk berinteraksi dan memanipulasi data sesuai kebutuhan. Visualisasi dalam antarmuka membantu dalam mengidentifikasi pola dan anomali, yang selanjutnya meningkatkan pemahaman data dan pengambilan keputusan.
Bahasa Transformasional
Dalam bidang transformasi data, terdapat banyak bahasa yang dirancang khusus untuk tujuan ini. Bahasa-bahasa ini sering kali memerlukan tata bahasa terstruktur, biasanya menyerupai bentuk Backus–Naur (BNF), untuk memfasilitasi penggunaannya. Mari kita jelajahi beberapa bahasa transformasional yang menonjol dan signifikansinya dalam lanskap transformasi data.
- AWK: Sebagai salah satu bahasa transformasi data tekstual tertua dan terpopuler, AWK telah teruji oleh waktu, menawarkan kemampuan yang kuat untuk memanipulasi data.
- Perl: Terkenal karena fleksibilitasnya, Perl berfungsi sebagai bahasa tingkat tinggi yang mampu melakukan operasi yang kuat pada data biner dan teks, menjadikannya pilihan yang disukai banyak pengembang.
- Bahasa Templat: Bahasa-bahasa ini berspesialisasi dalam mengubah data menjadi dokumen, memenuhi kebutuhan pembuatan dan pemrosesan dokumen.
- TXL: Dengan fokus pada pembuatan prototipe, TXL menawarkan deskripsi berbasis bahasa yang ideal untuk mengubah kode sumber atau data secara efisien.
- XSLT: Berfungsi sebagai bahasa transformasi data XML standar, XSLT dapat diterapkan secara luas di berbagai domain, menyediakan transformasi data XML yang mulus.
- Bahasa Transformasi Khusus Domain (DSL):
Perusahaan seperti Trifacta dan Paxata telah memelopori pengembangan DSL yang dirancang khusus untuk melayani dan mengubah kumpulan data. DSL ini, seperti "Wrangle" dari Trifacta, menyederhanakan proses transformasi dan meningkatkan produktivitas, khususnya bagi pengguna non-teknis.
- Keuntungan DSL:
Salah satu keuntungan utama DSL adalah kemampuannya untuk mengabstraksi logika eksekusi yang mendasarinya, memungkinkan integrasi yang lancar dengan berbagai mesin pemrosesan seperti Spark, MapReduce, dan Dataflow. Tidak seperti bahasa tradisional, DSL tidak terikat pada mesin dasar tertentu, sehingga menawarkan fleksibilitas dan skalabilitas dalam operasi transformasi data.
Disadur dari: en.wikipedia.org/wiki/Data_transformation_(computing)